BOOKS - Mathematical Methods in Data Science
Mathematical Methods in Data Science - Jingli Ren January 25, 2023 PDF  BOOKS
ECO~26 kg CO²

2 TON

Views
811497

Telegram
 
Mathematical Methods in Data Science
Author: Jingli Ren
Year: January 25, 2023
Format: PDF
File size: PDF 8.9 MB
Language: English



Book Description: Mathematical Methods in Data Science Jingli Ren January 25, 2023 Jingli Ren Genre: Non-Fiction, Technology, Data Science Summary: In today's world, data science has become an integral part of our daily lives, from social media to healthcare, finance, and education. With the rapid evolution of technology, it is essential to understand the process of technological advancements and their impact on humanity. In his book "Mathematical Methods in Data Science [author name] presents a comprehensive guide to the mathematical tools used in data science, highlighting the need for a personal paradigm to perceive the technological process of developing modern knowledge as the basis for human survival. The book covers a broad range of mathematical tools used in data science, including calculus, linear algebra, optimization, network analysis, probability, and differential equations. The author introduces a new approach based on network analysis to integrate big data into the framework of ordinary and partial differential equations for data analysis and prediction. This approach makes the book accessible to researchers and graduate students in mathematics and data science, providing clear explanations of advanced mathematical concepts, especially data-driven differential equations. The book includes examples and problems arising in data science, making it an excellent resource for those looking to deepen their understanding of mathematical methods in data science. With the increasing use of data science in various fields, this book is a must-read for anyone looking to stay up-to-date with the latest developments in the field. Introduction: In the modern world, technology has become an integral part of our daily lives.
''
Jingli Renデータサイエンスの数学的方法25 1月2023 Jingli Renジャンル: ノンフィクション文学、テクノロジー、データサイエンスの概要:今日の世界では、データサイエンスはソーシャルメディアから健康、金融、教育まで、私たちの日常生活の不可欠な部分となっています。技術の急速な発展に伴い、技術の進歩と人類への影響のプロセスを理解することが重要です。著書「Mathematical Methods in Data Science」(著者の名前)では、データサイエンスに使用される数学的ツールの包括的なガイドを提供し、現代の知識を開発する技術プロセスを人間の生存の基礎として認識するための人格パラダイムの必要性を強調している。本書は、計算、線形代数、最適化、ネットワーク解析、確率、微分方程式など、データサイエンスで使用される幅広い数学的ツールを網羅しています。著者は、データ分析と予測のための通常および部分微分方程式にビッグデータを統合するための新しいネットワーク分析ベースのアプローチを紹介します。このアプローチは、数学やデータサイエンスの研究者や大学院生に、高度な数学的概念、特にデータ主導の微分方程式の明確な説明を提供することによってアクセス可能になります。この本には、データサイエンスに起因する例や問題が含まれており、データサイエンスにおける数学的手法の理解を深めたい人にとって優れたリソースとなっています。様々な分野でのデータサイエンスの利用が増加しているため、この本は、この分野の最新の開発を最新の状態に保ちたい人にとって必読です。はじめに:今日の世界では、テクノロジーは私たちの日常生活の不可欠な部分となっています。

You may also be interested in:

Mathematical Methods in Data Science
Big Data and Social Science Data Science Methods and Tools for Research and Practice, 2nd Edition
Mathematical Methods for Engineering and Science
Essentials of Mathematical Methods in Science and Engineering, Second Edition
Statistical Methods for Materials Science The Data Science of Microstructure Characterization
Mathematical Introduction to Data Science
Mathematical Introduction to Data Science
Advanced Mathematical Applications in Data Science
Advanced Mathematical Applications in Data Science
Mathematical Foundations of Data Science Using R, 2nd Edition
Data Science with Java Practical Methods for Scientists and Engineers
Introduction to Statistical and Machine Learning Methods for Data Science
Mathematical Methods of Statistics (PMS-9), Volume 9 (Princeton Mathematical Series)
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Validity, Reliability, and Significance Empirical Methods for NLP and Data Science, 2nd Edition
Validity, Reliability, and Significance Empirical Methods for NLP and Data Science, 2nd Edition
Validity, Reliability, and Significance: Empirical Methods for NLP and Data Science (Synthesis Lectures on Human Language Technologies)
Python Data Science The Complete Guide to Data Analytics + Machine Learning + Big Data Science + Pandas Python. The Easy Way to Programming (Exercises Included)
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud, Global Edition
Advancement of Data Processing Methods for Artificial and Computing Intelligence (River Publishers Series in Computing and Information Science and Technology)
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
Learn Data Science Fundamentals A Beginner|s Guide To Data Science Programs, Analysis And Visualization
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
DATA SCIENCE WITH PYTHON Complete Guide To Understanding Data Analytics And Data Science With Python Programming
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Why Data Science Projects Fail: The Harsh Realities of Implementing AI and Analytics, without the Hype (Chapman and Hall CRC Data Science Series)
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud
Data Science A Comprehensive Beginner’s Guide to Learn About the Realms of Data Science from A-Z
Data Science A Comprehensive Beginners Guide to Learn the Realms of Data Science
Data Science: A First Introduction (Chapman and Hall CRC Data Science Series)
Data Science: The Hard Parts: Techniques for Excelling at Data Science
Data Science The Hard Parts Techniques for Excelling at Data Science
Data Science The Hard Parts Techniques for Excelling at Data Science
Confident Data Science Discover the Essential Skills of Data Science
Confident Data Science Discover the Essential Skills of Data Science
Graph Data Science with Python and Neo4j Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies
Graph Data Science with Python and Neo4j Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies