BOOKS - The Mathematics of Shuffling Cards
The Mathematics of Shuffling Cards - Persi Diaconis  PDF  BOOKS
ECO~17 kg CO²

2 TON

Views
35754

Telegram
 
The Mathematics of Shuffling Cards
Author: Persi Diaconis
Format: PDF
File size: PDF 47 MB
Language: English



Pay with Telegram STARS
The Mathematics of Shuffling Cards: A Journey into the Heart of Probability Theory As we delve into the intricate world of card shuffling, we embark on a fascinating journey that not only reveals the secrets of this seemingly simple task but also exposes the profound connections between mathematics and human perception. In "The Mathematics of Shuffling Cards we explore the evolution of technology and its impact on our understanding of the world, and how this understanding can shape our survival and unity in a warring state. This book delves into the mathematical concepts that govern the art of shuffling cards, from probability Markov chains to combinatorics, symmetric function theory, and algebra Hopf algebras. We examine the interplay between these mathematical principles and their practical applications in magic tricks, gambling, and real-world card shuffling. Probability Theory: The Foundation of Card Shuffling At the core of card shuffling lies probability theory, which provides the mathematical framework for understanding the likelihood of certain outcomes. We begin by examining the concept of randomness and the role it plays in shuffling, as well as the different types of shuffles used in practice, such as riffle, overhand, and smooshing. We then delve into the probability distributions that govern each shuffle, providing a deeper appreciation for the intricacies of this process.
Математика тасования карт: путешествие в сердце теории вероятностей По мере того, как мы углубляемся в сложный мир тасования карт, мы отправляемся в увлекательное путешествие, которое не только раскрывает секреты этой, казалось бы, простой задачи, но и раскрывает глубокие связи между математикой и человеческим восприятием. В «Математике тасования карт» мы исследуем эволюцию технологий и ее влияние на наше понимание мира, а также то, как это понимание может формировать наше выживание и единство в воюющем государстве. Эта книга углубляется в математические концепции, которые управляют искусством тасования карт, от цепей Маркова вероятности до комбинаторики, теории симметричных функций и алгебры Хопфа алгебр. Мы исследуем взаимодействие между этими математическими принципами и их практическими применениями в фокусах, азартных играх и реальном тасовании карт. Теория вероятностей: основа перетасовки карт В основе перетасовки карт лежит теория вероятностей, которая обеспечивает математическую основу для понимания вероятности определенных результатов. Мы начинаем с изучения концепции случайности и той роли, которую она играет в тасовании, а также различных типов тасований, используемых на практике, таких как рифл, оверхенд и сглаживание. Затем мы углубляемся в распределения вероятностей, которые управляют каждым тасованием, обеспечивая более глубокое понимание тонкостей этого процесса.
Mathematical Maps Towing : Voyage au cœur de la théorie des probabilités Alors que nous nous enfoncons dans le monde complexe de la cartographie, nous nous embarquons dans un voyage fascinant qui non seulement révèle les secrets de cette tâche apparemment simple, mais aussi révèle les liens profonds entre les mathématiques et la perception humaine. Dans Mathematical Tasing Map, nous examinons l'évolution de la technologie et son impact sur notre compréhension du monde, ainsi que la façon dont cette compréhension peut façonner notre survie et notre unité dans un État en guerre. Ce livre se penche sur les concepts mathématiques qui régissent l'art de la traction des cartes, des chaînes de probabilité de Markov à la combinatoire, la théorie des fonctions symétriques et l'algèbre de Hopf algèbre. Nous explorons l'interaction entre ces principes mathématiques et leurs applications pratiques dans les focales, les jeux de hasard et la traction réelle des cartes. Théorie des probabilités : la base du mélange de cartes mélange de cartes repose sur la théorie des probabilités, qui fournit une base mathématique pour comprendre la probabilité de certains résultats. Nous commençons par étudier le concept du hasard et le rôle qu'il joue dans le mélange, ainsi que les différents types de mélange utilisés dans la pratique, tels que le rifle, l'overhend et le lissage. Nous approfondirons ensuite les distributions de probabilités qui contrôlent chaque fusion, permettant une meilleure compréhension des subtilités de ce processus.
Matemáticas de barajar mapas: un viaje al corazón de la teoría de la probabilidad A medida que profundizamos en el complejo mundo de barajar mapas, nos embarcamos en un fascinante viaje que no sólo revela los secretos de este problema aparentemente simple, sino que también revela las profundas conexiones entre las matemáticas y la percepción humana. En "Mathematics of Baring Cards'exploramos la evolución de la tecnología y su impacto en nuestra comprensión del mundo, así como cómo esta comprensión puede dar forma a nuestra supervivencia y unidad en un estado en guerra. Este libro profundiza en los conceptos matemáticos que rigen el arte de barajar mapas, desde las cadenas de probabilidad de Markov hasta la combinatoria, la teoría de funciones simétricas y el álgebra de Hopf. Investigamos la interacción entre estos principios matemáticos y sus aplicaciones prácticas en el enfoque, el juego y el barajado real de mapas. Teoría de probabilidades: la base del barajado de mapas barajado de mapas se basa en la teoría de probabilidades, que proporciona una base matemática para entender la probabilidad de ciertos resultados. Comenzamos estudiando el concepto de aleatoriedad y el papel que desempeña en el barajado, así como los diferentes tipos de barajos utilizados en la práctica, como el rifle, el overhand y el suavizado. Luego profundizamos en las distribuciones de probabilidad que gobiernan cada barajamiento, proporcionando una comprensión más profunda de las sutilezas de este proceso.
Matematica delle mappe: viaggio nel cuore della teoria delle probabilità Mentre ci approfondiamo nel complesso mondo del tesseramento, partiamo per un viaggio affascinante che non solo rivela i segreti di questa sfida apparentemente semplice, ma rivela anche i profondi legami tra matematica e percezione umana. In Matematica Tesseramento stiamo esplorando l'evoluzione della tecnologia e la sua influenza sulla nostra comprensione del mondo, e come questa comprensione possa formare la nostra sopravvivenza e l'unità in uno stato in guerra. Questo libro si approfondisce nei concetti matematici che guidano l'arte delle mappe di tasatura, dalle catene di Markov probabilità alla combinazione, la teoria delle funzioni simmetriche e l'algebra di Hopf algebr. Stiamo esplorando l'interazione tra questi principi matematici e le loro applicazioni pratiche in focolai, gioco d'azzardo e reale tasatura delle carte. Teoria delle probabilità: la base della mappatura È la teoria delle probabilità, che fornisce una base matematica per comprendere la probabilità di determinati risultati. Iniziamo studiando il concetto di casualità e il ruolo che svolge nella tasatura, così come i diversi tipi di tasing utilizzati in pratica, come rill, overhand e antialiasing. Poi ci stiamo approfondendo nella distribuzione delle probabilità che controllano ogni tassazione, fornendo una migliore comprensione delle finezze del processo.
Die Mathematik des Kartenmischens: Eine Reise ins Herz der Wahrscheinlichkeitstheorie Während wir in die komplexe Welt des Kartenmischens eintauchen, begeben wir uns auf eine faszinierende Reise, die nicht nur die Geheimnisse dieser scheinbar einfachen Aufgabe enthüllt, sondern auch die tiefen Verbindungen zwischen Mathematik und menschlicher Wahrnehmung aufdeckt. In „Mathematics of Changing Maps“ untersuchen wir die Entwicklung der Technologie und ihre Auswirkungen auf unser Verständnis der Welt und wie dieses Verständnis unser Überleben und unsere Einheit in einem kriegführenden Staat prägen kann. Dieses Buch vertieft sich in die mathematischen Konzepte, die die Kunst des Kartenschüttelns steuern, von den Markov-Ketten der Wahrscheinlichkeit bis zur Kombinatorik, der Theorie der symmetrischen Funktionen und der Hopf-Algebra Algebra. Wir untersuchen das Zusammenspiel dieser mathematischen Prinzipien mit ihren praktischen Anwendungen in Zaubertricks, Glücksspielen und echtem Kartenschütteln. Wahrscheinlichkeitstheorie: Die Grundlage für das Mischen von Karten Das Mischen von Karten basiert auf der Wahrscheinlichkeitstheorie, die eine mathematische Grundlage für das Verständnis der Wahrscheinlichkeit bestimmter Ergebnisse bietet. Wir beginnen damit, das Konzept des Zufalls und die Rolle, die es beim Mischen spielt, sowie die verschiedenen Arten von Shuffles, die in der Praxis verwendet werden, wie Riff, Overhand und Smoothing, zu untersuchen. Wir gehen dann tiefer in die Wahrscheinlichkeitsverteilungen, die jedes Mischen steuern, und bieten ein tieferes Verständnis der Feinheiten dieses Prozesses.
''
Kartları Karıştırmanın Matematiği: Olasılık Teorisinin Kalbine Bir Yolculuk Karışık kartların karmaşık dünyasına girerken, sadece bu görünüşte basit olan işin sırlarını açığa çıkarmakla kalmayıp, aynı zamanda matematik ve insan algısı arasındaki derin bağlantıları da ortaya çıkaran büyüleyici bir yolculuğa çıkıyoruz. "Karmakarışık Kartların Matematiği'nde, teknolojinin evrimini ve dünya anlayışımız üzerindeki etkisini ve bu anlayışın savaşan bir durumda hayatta kalmamızı ve birliğimizi nasıl şekillendirebileceğini araştırıyoruz. Bu kitap, kart karıştırma sanatını yöneten matematiksel kavramları, olasılık Markov zincirlerinden kombinatoriklere, simetrik fonksiyon teorisine ve Hopf cebirine kadar inceliyor. Bu matematiksel ilkeler ile sihir hileleri, kumar ve gerçek kart karıştırmadaki pratik uygulamaları arasındaki etkileşimi araştırıyoruz. Olasılık Teorisi: Harita Karıştırmanın Temeli Harita karıştırmanın temeli, belirli sonuçların olasılığını anlamak için matematiksel bir temel sağlayan olasılık teorisidir. Rastgelelik kavramını ve karıştırmada oynadığı rolü, ayrıca uygulamada kullanılan riffle, overhand ve smoothing gibi farklı karıştırma türlerini keşfederek başlıyoruz. Daha sonra, her bir karışıklığı yöneten olasılık dağılımlarını inceleyerek, bu sürecin karmaşıklıklarını daha iyi anlamamızı sağlıyoruz.
رياضيات بطاقات الخلط: رحلة إلى قلب نظرية الاحتمال بينما نتعمق في العالم المعقد لبطاقات الخلط، نشرع في رحلة رائعة لا تكشف فقط أسرار هذه المهمة التي تبدو بسيطة، ولكنها تكشف أيضًا عن الروابط العميقة بين الرياضيات والإدراك البشري. في «رياضيات بطاقات الخلط»، نستكشف تطور التكنولوجيا وتأثيرها على فهمنا للعالم، وكيف يمكن لهذا الفهم أن يشكل بقاءنا ووحدتنا في حالة حرب. يتعمق هذا الكتاب في المفاهيم الرياضية التي تحكم فن خلط البطاقات، من احتمالية سلاسل ماركوف إلى التوافقيات، ونظرية الدالة المتماثلة، وجبر هوبف. نستكشف التفاعل بين هذه المبادئ الرياضية وتطبيقاتها العملية في الحيل السحرية والمقامرة وخلط البطاقات الحقيقية. نظرية الاحتمالات: أساس خلط الخرائط أساس خلط الخرائط هو نظرية الاحتمالات، التي توفر أساسًا رياضيًا لفهم احتمالية نتائج معينة. نبدأ باستكشاف مفهوم العشوائية والدور الذي تلعبه في الخلط، بالإضافة إلى الأنواع المختلفة من الخلطات المستخدمة في الممارسة العملية، مثل البندقية والضربات العلوية والتنعيم. ثم نتعمق في توزيعات الاحتمالات التي تحكم كل خلط، مما يوفر فهمًا أعمق لتعقيدات هذه العملية.

You may also be interested in:

The Mathematics of Shuffling Cards
Paper Flower Note Cards Pop-up Cards - Greeting Cards - Gift Toppers
Tuttle Tagalog for Kids Flash Cards Kit Ebook: (Includes 64 Flash Cards, Downloadable Audio, Wall Chart and Learning Guide) (Tuttle Flash Cards)
Secrets of the Millionaire Mind Cards by Eker, T. Harv(March 15, 2006) Cards
Christmas in the Cards (Romance in the Cards Book 1)
Lowball: A Wild Cards Mosaic Novel by Wild Cards Trust (2015-11-03)
Brain Quest Workbook: 1st Grade (Workbook, Math Q and A Cards, Reading Q and A Cards, Brain Quest 1st Grade Q and A Cards 4 bookset )
Mathematics Going Forward: Collected Mathematical Brushstrokes (Lecture Notes in Mathematics, 2313)
Discrete Mathematics: A Concise Introduction (Synthesis Lectures on Mathematics and Statistics)
X Games in Mathematics Sports Training That Counts! (Problem Solving in Mathematics and Beyond)
Basic Gambling Mathematics (AK Peters CRC Recreational Mathematics Series)
Synergies in Analysis, Discrete Mathematics, Soft Computing and Modelling (Forum for Interdisciplinary Mathematics)
Computational Mathematics: An introduction to Numerical Analysis and Scientific Computing with Python (Advances in Applied Mathematics)
Rethinking Disability and Mathematics: A UDL Math Classroom Guide for Grades K-8 (Corwin Mathematics Series)
The Role of the History of Mathematics in the Teaching Learning Process: A CIEAEM Sourcebook (Advances in Mathematics Education)
Edexcel A level Mathematics Pure Mathematics Year 2 Textbook
Introduction to Financial Mathematics With Computer Applications (Textbooks in Mathematics)
Computing Algorithms for Solutions of Problems in Applied Mathematics and Their Standard Program Realization Deterministic Mathematics, Part 1
Figuring Out Fluency in Mathematics Teaching and Learning, Grades K-8 Moving Beyond Basic Facts and Memorization (Corwin Mathematics)
Computing Algorithms for Solutions of Problems in Applied Mathematics and Their Standard Program Realization Stochastic Mathematics, Part 2
Figuring Out Fluency in Mathematics Teaching and Learning, Grades K-8 Moving Beyond Basic Facts and Memorization (Corwin Mathematics)
Methods of Applied Mathematics (Dover Books on Mathematics)
The Gentle Art of Mathematics (Dover Books on Mathematics)
Concepts of Modern Mathematics (Dover Books on Mathematics)
Examinations in Mathematics (Core Books in Advanced Mathematics)
Advances in Mathematical Modeling and Scientific Computing: International Conference on Recent Developments in Mathematics, Dubai, 2022 - Volume 2 (Trends in Mathematics)
Mathematics Instruction and Tasks in a PLC at Work(TM): (Develop a Standards-Based Math Curriculum in Your Professional Learning Community) (Every Student Can Learn Mathematics)
Discrete Mathematics with Coding (Textbooks in Mathematics)
Additional Mathematics: Pure and applied mathematics
Introductory Artillery Mathematics and AntiAircraft Mathematics
Edexcel AS and A level Further Mathematics. Further Pure Mathematics 2
Cards of Death box set 1 (Cards of Death #1-3)
Modifying Your Thinking Classroom for Different Settings: A Supplement to Building Thinking Classrooms in Mathematics (Corwin Mathematics Series)
Emergence of the Theory of Lie Groups: An Essay in the History of Mathematics 1869-1926 (Sources and Studies in the History of Mathematics and Physical Sciences)
Mathematics Unit Planning in a PLC at Work(R), Grades 3-5 (A guide to collaborative teaching and mathematics lesson planning to increase student understanding and expected learning outcomes.)
Advances In The History Of Mathematics Education (International Studies in the History of Mathematics and its Teaching)
Wild Cards III: Jokers Wild (Wild Cards, #3)
Making Sense of Mathematics for Teaching the Small Group (Small-Group Instruction Strategies to Differentiate Math Lessons in Elementary Classrooms) (Every Student Can Learn Mathematics)
Recent Developments in Algebra and Analysis: International Conference on Recent Developments in Mathematics, Dubai, 2022 - Volume 1 (Trends in Mathematics)
Mathematics for Reliability Engineering: Modern Concepts and Applications (De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences, 8)