BOOKS - Regularization Algorithms for Ill-Posed Problems (Inverse and Ill-Posed Probl...
Regularization Algorithms for Ill-Posed Problems (Inverse and Ill-Posed Problems Series Book 61) - Anatoly B Bakushinsky February 5, 2018 PDF  BOOKS
ECO~20 kg CO²

2 TON

Views
3325

Telegram
 
Regularization Algorithms for Ill-Posed Problems (Inverse and Ill-Posed Problems Series Book 61)
Author: Anatoly B Bakushinsky
Year: February 5, 2018
Format: PDF
File size: PDF 1.9 MB
Language: English



Pay with Telegram STARS
Regularization Algorithms for Ill-Posed Problems - Inverse and Ill-Posed Problems Series Book 61 As technology continues to evolve at an unprecedented pace, it is essential to understand the process of technological development and its impact on humanity. In "Regularization Algorithms for Ill-Posed Problems Anatoly B Bakushinsky provides a comprehensive overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. This specialized and authoritative book offers a detailed description of stable solution methods for ill-posed problems using the methodology of iterative regularization, classical iterative schemes, and techniques of finite dimensional and finite difference approximations. The book begins with an introduction to regularization methods for linear equations, providing readers with a solid foundation in functional analysis and differential equations. The author then delves into finite difference methods, iterative regularization methods, and finite-dimensional iterative processes, making the content accessible to advanced students and applied mathematicians alike. One of the most significant contributions of this book is its focus on ill-posed Cauchy problems for linear operator differential equations and ill-posed variational inequalities and optimization problems. These topics are often overlooked in traditional texts but are crucial for understanding the evolution of modern knowledge and its application to real-world problems.
Алгоритмы регуляризации для плохо поставленных проблем - обратные и плохо поставленные проблемы Серия книг 61 Поскольку технология продолжает развиваться беспрецедентными темпами, важно понимать процесс технологического развития и его влияние на человечество. В «Алгоритмах регуляризации для плохо поставленных задач» Анатолий Б. Бакушинский приводит комплексный обзор современных подходов к построению приближений к решениям плохо поставленных операторных уравнений, как линейных, так и нелинейных. Эта специализированная и авторитетная книга предлагает подробное описание методов стабильного решения для плохо поставленных задач с использованием методологии итеративной регуляризации, классических итеративных схем и методов аппроксимации конечных размерностей и конечных разностей. Книга начинается с введения в методы регуляризации линейных уравнений, предоставляя читателям прочную основу в функциональном анализе и дифференциальных уравнениях. Затем автор углубляется в методы конечных разностей, итеративные методы регуляризации и конечномерные итерационные процессы, делая содержание доступным как для продвинутых студентов, так и для прикладных математиков. Одним из наиболее значительных вкладов этой книги является её внимание к плохо поставленным задачам Коши для линейных дифференциальных уравнений оператора и плохо поставленным вариационным неравенствам и задачам оптимизации. Эти темы часто упускаются из виду в традиционных текстах, но имеют решающее значение для понимания эволюции современных знаний и их применения к реальным проблемам.
Algoritmos de regularización para problemas mal planteados - problemas inversos y mal planteados Serie de libros 61 A medida que la tecnología continúa evolucionando a un ritmo sin precedentes, es importante comprender el proceso de desarrollo tecnológico y su impacto en la humanidad. En «Algoritmos de regularización para problemas mal establecidos», Anatoli B. Bakushinsky ofrece una amplia visión general de los enfoques modernos para construir aproximaciones a soluciones de ecuaciones operativas mal establecidas, tanto lineales como no lineales. Este libro especializado y reputado ofrece una descripción detallada de las técnicas de solución estable para problemas mal planteados utilizando la metodología de regularización iterativa, esquemas iterativos clásicos y técnicas de aproximación de dimensiones finitas y diferencias finitas. libro comienza con una introducción a los métodos de regularización de ecuaciones lineales, proporcionando a los lectores una base sólida en análisis funcional y ecuaciones diferenciales. A continuación, el autor profundiza en los métodos de diferencias finitas, los métodos iterativos de regularización y los procesos iterativos finitos, poniendo el contenido a disposición tanto de los estudiantes avanzados como de los matemáticos aplicados. Una de las contribuciones más significativas de este libro es su atención a los problemas mal establecidos de Cauchy para las ecuaciones diferenciales lineales del operador y las desigualdades variacionales mal establecidas y los problemas de optimización. Estos temas a menudo se pasan por alto en los textos tradicionales, pero son cruciales para entender la evolución del conocimiento moderno y su aplicación a problemas reales.
''
不適切な問題のための正規化アルゴリズム-逆と不十分な問題本のシリーズ61技術が前例のないペースで発展し続けるにつれて、技術開発のプロセスとその人類への影響を理解することが重要です。Anatoly B。 Bakushinskyは「、不十分なポーズの問題のための正規化アルゴリズム」で、線形および非線形の両方の、ポーズの悪い演算子方程式の解への近似を構築するための現代的なアプローチの包括的なレビューを提供します。この専門的かつ権威ある本は、反復正規化の方法論、古典的反復スキーム、および有限次元と有限の相違を近似するための方法を使用して、不十分に提起された問題のための安定した解決方法の詳細な説明を提供しています。この本は、直線方程式の正規化方法の紹介から始まり、読者に関数解析と微分方程式の基礎を提供します。次に著者は、有限差分法、反復正規化法、有限次元反復過程を掘り下げ、上級者と応用数学者の両方がコンテンツにアクセスできるようにする。この本の最も重要な貢献の1つは、演算子の線型微分方程式に対するコーシー問題の提起が不十分であり、可変不等式と最適化問題の提起が不十分であることである。これらのテーマは、伝統的なテキストでは見過ごされがちですが、現代の知識の進化を理解し、現実の問題に適用することには重要です。

You may also be interested in:

Regularization Algorithms for Ill-Posed Problems (Inverse and Ill-Posed Problems Series Book 61)
Ill-Posed and Inverse Problems: Dedicated to Academician Mikhail Mikhailovich Lavrentiev on the Occasion of His 70th Birthday (Inverse and Ill-Posed Problems Series)
Generalized Inverse Operators: And Fredholm Boundary-value Problems (Inverse and Ill-Posed Problems) (Inverse and Ill-Posed Problems, 59)
Ill-Posed Problems with a Priori Information (Inverse and Ill-Posed Problems) (Inverse and Ill-Posed Problems Series)
Optimal Methods for Ill-Posed Problems: With Applications to Heat Conduction (Inverse and Ill-Posed Problems Series Book 62)
Inverse and Ill-posed Problems: Theory and Applications (Inverse and Ill-Posed Problems Series, 55)
Inverse and Ill-Posed Problems Series, Theory of Linear Ill-Posed Problems and Its Applications
Carleman Estimates for Coefficient Inverse Problems and Numerical Applications (Inverse and Ill-Posed Problems)
Numerical Methods for Solving Inverse Problems of Mathematical Physics (Inverse and Ill-posed Problems)
Nonclassical and Inverse Problems for Pseudoparabolic Equations (Inverse and Ill-Posed Problems Series, 7)
Elements of the Theory of Inverse Problems (Inverse and Ill-Posed Problems Series, 14)
Inverse Problems of Wave Processes (Inverse and Ill-Posed Problems Series)
Regularization Theory for Ill-posed Problems
Ill-Posed Boundary-Value Problems (Inverse and Ill-Posed Problems)
Inverse Logarithmic Potential Problem (Inverse and Ill-Posed Problems Series)
Uniqueness Problems for Degenerating Equations and Nonclassical Problems (Inverse and Ill-Posed Problems Series)
An Introduction to Identification Problems via Functional Analysis (Inverse and Ill-Posed Problems Series, 26)
Formulas in Inverse and Ill-Posed Problems
Inverse and Ill-Posed Sources Problems
Multidimensional Inverse and Ill-Posed Problems for Differential Equations
Integral Geometry of Tensor Fields (Inverse and Ill-Posed Problems)
Counterexamples in Optimal Control Theory (Inverse and Ill-Posed Problems)
Linear Sobolev Type Equations and Degenerate Semigroups of Operators (Inverse and Ill-Posed Problems)
Volterra Equations and Inverse Problems (Inverse and Iii-Posed Problems)
Well-Posed, Ill-Posed, and Intermediate Problems with Applications
Identification Problems of Wave Phenomena: Theory and Numerics (Inverse and Iii-Posed Problems)
Computer Modelling in Tomography and Ill-Posed Problems
Iterative Methods for Ill-Posed Problems: An Introduction
Ill-Posed Internal Boundary Value Problems for the Biharmonic Equation
The Mollification Method and the Numerical Solution of Ill-Posed Problems
Partial differential equations.. theory, numerical methods and ill-posed problems
Ill-Posed Problems in Natural Sciences: Proceedings of the International Conference Held in Moscow, August 19-25, 1991
Inverse Problems
Some Improperly Posed Problems of Mathematical Physics
Inverse Problems of Vibrational Spectroscopy
Investigation Methods for Inverse Problems
Inverse Problems of Mathematical Physics
Inverse Problems for Partial Differential Equations
Inverse Problems for Maxwell|s Equations
Surveys on Solution Methods for Inverse Problems