BOOKS - Fundamental Mathematical Concepts for Machine Learning in Science
Fundamental Mathematical Concepts for Machine Learning in Science - Umberto Michelucci May 17, 2024 PDF  BOOKS
ECO~26 kg CO²

3 TON

Views
722110

Telegram
 
Fundamental Mathematical Concepts for Machine Learning in Science
Author: Umberto Michelucci
Year: May 17, 2024
Format: PDF
File size: PDF 3.6 MB
Language: English



Book Fundamental Mathematical Concepts for Machine Learning in Science Introduction: In today's world, technology has become an integral part of our daily lives, and its evolution has been rapid and relentless. The field of machine learning has been one of the most significant contributors to this technological advancement, revolutionizing various scientific disciplines such as physics, chemistry, biology, medicine, and many more. However, the successful application of machine learning in these fields requires a deep understanding of the underlying mathematical concepts that govern its principles. This book aims to provide a comprehensive introduction to the fundamental mathematical concepts that are essential for effective machine learning in science. It is intended for individuals with a scientific background who aspire to apply machine learning in their respective domains. Chapter 1: Calculus - The Backbone of Machine Learning Calculus is the foundation of machine learning, providing the tools to understand the training processes of algorithms and neural networks. This chapter delves into the basic concepts of calculus, including limits, derivatives, and integrals, and demonstrates how they are applied in machine learning.
Book Fundamental Mathematical Concepts for Machine arning in Science Введение: В современном мире технологии стали неотъемлемой частью нашей повседневной жизни, и их эволюция была быстрой и неустанной. Область машинного обучения была одним из наиболее значительных участников этого технологического прогресса, совершив революцию в различных научных дисциплинах, таких как физика, химия, биология, медицина и многие другие. Однако успешное применение машинного обучения в этих областях требует глубокого понимания лежащих в основе математических концепций, управляющих его принципами. Эта книга призвана обеспечить всестороннее введение в фундаментальные математические концепции, которые необходимы для эффективного машинного обучения в науке. Он предназначен для людей с научным образованием, которые стремятся применить машинное обучение в своих областях. Глава 1: Исчисление - Основа исчисления машинного обучения является основой машинного обучения, предоставляя инструменты для понимания процессов обучения алгоритмов и нейронных сетей. Эта глава углубляется в основные понятия исчисления, включая пределы, производные и интегралы, и демонстрирует, как они применяются в машинном обучении.
Book Fundamental Mathematical Concepts for Machine Arning in Science Introduction : Dans le monde d'aujourd'hui, la technologie est devenue une partie intégrante de notre vie quotidienne et leur évolution a été rapide et inlassable. domaine de l'apprentissage automatique a été l'un des acteurs les plus importants de ce progrès technologique, révolutionnant diverses disciplines scientifiques telles que la physique, la chimie, la biologie, la médecine et bien d'autres. Cependant, l'application réussie de l'apprentissage automatique dans ces domaines nécessite une compréhension approfondie des concepts mathématiques sous-jacents qui régissent ses principes. Ce livre vise à fournir une introduction complète aux concepts mathématiques fondamentaux qui sont nécessaires pour l'apprentissage automatique efficace dans les sciences. Il est conçu pour les personnes ayant une formation scientifique qui cherchent à appliquer l'apprentissage automatique dans leurs domaines. Chapitre 1 : Calcul - La base du calcul de l'apprentissage automatique est la base de l'apprentissage automatique, fournissant des outils pour comprendre les processus d'apprentissage des algorithmes et des réseaux neuronaux. Ce chapitre explore les notions fondamentales de calcul, y compris les limites, les dérivés et les intégrales, et montre comment elles sont appliquées dans l'apprentissage automatique.
Book Conceptos matemáticos fundacionales de la máquina en la ciencia Introducción: En el mundo actual, la tecnología se ha convertido en una parte integral de nuestra vida cotidiana y su evolución ha sido rápida e implacable. campo del aprendizaje automático ha sido uno de los actores más significativos de este avance tecnológico, revolucionando diversas disciplinas científicas como la física, la química, la biología, la medicina y muchas otras. n embargo, la aplicación exitosa del aprendizaje automático en estas áreas requiere una comprensión profunda de los conceptos matemáticos subyacentes que gobiernan sus principios. Este libro está diseñado para proporcionar una introducción integral a los conceptos matemáticos fundamentales que son necesarios para el aprendizaje automático efectivo en la ciencia. Está dirigido a personas con educación científica que buscan aplicar el aprendizaje automático en sus campos. Capítulo 1: Cálculo - La base del cálculo del aprendizaje automático es la base del aprendizaje automático, proporcionando herramientas para entender los procesos de aprendizaje de algoritmos y redes neuronales. Este capítulo profundiza en los conceptos básicos del cálculo, incluyendo límites, derivados e integrales, y demuestra cómo se aplican en el aprendizaje automático.
Buch Grundlegende mathematische Konzepte für maschinelles rnen in der Wissenschaft Einleitung: In der heutigen Welt sind Technologien zu einem festen Bestandteil unseres täglichen bens geworden, und ihre Entwicklung war schnell und unerbittlich. Der Bereich des maschinellen rnens war einer der bedeutendsten Akteure dieses technologischen Fortschritts und revolutionierte verschiedene wissenschaftliche Disziplinen wie Physik, Chemie, Biologie, Medizin und viele andere. Die erfolgreiche Anwendung des maschinellen rnens in diesen Bereichen erfordert jedoch ein tiefes Verständnis der zugrunde liegenden mathematischen Konzepte, die seine Prinzipien steuern. Dieses Buch soll eine umfassende Einführung in grundlegende mathematische Konzepte bieten, die für effektives maschinelles rnen in der Wissenschaft unerlässlich sind. Es richtet sich an Personen mit wissenschaftlichem Hintergrund, die maschinelles rnen in ihren Bereichen anwenden möchten. Kapitel 1: Kalkül - Das Kalkül des maschinellen rnens ist das Rückgrat des maschinellen rnens und bietet Werkzeuge zum Verständnis der rnprozesse von Algorithmen und neuronalen Netzen. Dieses Kapitel befasst sich mit den grundlegenden Konzepten des Kalküls, einschließlich Grenzen, Ableitungen und Integralen, und zeigt, wie sie im maschinellen rnen angewendet werden.
''
Bilimde Makine Öğrenimi için Temel Matematiksel Kavramlar Giriş: Günümüz dünyasında, teknoloji günlük hayatımızın ayrılmaz bir parçası haline geldi ve evrimi hızlı ve acımasız oldu. Makine öğrenimi alanı, fizik, kimya, biyoloji, tıp ve diğerleri gibi çeşitli bilimsel disiplinlerde devrim yaratan bu teknolojik ilerlemeye en önemli katkılardan biri olmuştur. Bununla birlikte, makine öğreniminin bu alanlarda başarılı bir şekilde uygulanması, ilkelerini düzenleyen temel matematiksel kavramların derinlemesine anlaşılmasını gerektirir. Bu kitap, bilimde etkili makine öğrenimi için gerekli olan temel matematiksel kavramlara kapsamlı bir giriş yapmayı amaçlamaktadır. Makine öğrenimini kendi alanlarına uygulamak isteyen bilimsel bir geçmişe sahip insanlara yöneliktir. Bölüm 1: Calculus - Makine öğrenimi hesabı çerçevesi, algoritma öğrenme süreçlerini ve sinir ağlarını anlamak için araçlar sağlayan makine öğreniminin temelidir. Bu bölüm, limitler, türevler ve integraller dahil olmak üzere kalkülüsün temel kavramlarını inceler ve makine öğreniminde nasıl uygulandığını gösterir.
كتاب المفاهيم الرياضية الأساسية للتعلم الآلي في العلوم مقدمة: في عالم اليوم، أصبحت التكنولوجيا جزءًا لا يتجزأ من حياتنا اليومية، وكان تطورها سريعًا ولا هوادة فيه. كان مجال التعلم الآلي أحد أهم المساهمين في هذا التقدم التكنولوجي، حيث أحدث ثورة في مختلف التخصصات العلمية مثل الفيزياء والكيمياء وعلم الأحياء والطب وغيرها الكثير. ومع ذلك، فإن التطبيق الناجح للتعلم الآلي في هذه المجالات يتطلب فهمًا عميقًا للمفاهيم الرياضية الأساسية التي تحكم مبادئها. يهدف هذا الكتاب إلى تقديم مقدمة شاملة للمفاهيم الرياضية الأساسية الضرورية للتعلم الآلي الفعال في العلوم. إنه يستهدف الأشخاص ذوي الخلفية العلمية الذين يسعون إلى تطبيق التعلم الآلي على مجالاتهم. الفصل 1: حساب التفاضل والتكامل - إطار حساب التفاضل والتكامل للتعلم الآلي هو أساس التعلم الآلي، ويوفر أدوات لفهم عمليات تعلم الخوارزميات والشبكات العصبية. يتعمق هذا الفصل في المفاهيم الأساسية لحساب التفاضل والتكامل، بما في ذلك الحدود والمشتقات والتكاملات، ويوضح كيفية تطبيقها في التعلم الآلي.

You may also be interested in:

Fundamental Mathematical Concepts for Machine Learning in Science
Fundamental Mathematical Concepts for Machine Learning in Science
Fundamental Mathematical Concepts for Machine Learning in Science
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Machine Learning A Comprehensive, Step-by-Step Guide to Intermediate Concepts and Techniques in Machine Learning
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Mathematical Analysis of Machine Learning Algorithms
Mathematical Analysis of Machine Learning Algorithms
Before Machine Learning, Volume 2 - Calculus for A.I. The fundamental mathematics for Data Science and Artificial Intelligence
Before Machine Learning, Volume 2 - Calculus for A.I. The fundamental mathematics for Data Science and Artificial Intelligence
Before Machine Learning Volume 2 - Calculus for A.I: The fundamental mathematics for Data Science and Artificial Intelligence
Before Machine Learning Volume 1 - Linear Algebra for A.I. The fundamental mathematics for Data Science and Artificial Inteligence
Before Machine Learning Volume 1 - Linear Algebra for A.I: The fundamental mathematics for Data Science and Artificial Inteligence.
Before Machine Learning Volume 1 - Linear Algebra for A.I. The fundamental mathematics for Data Science and Artificial Inteligence
Introduction to Machine Learning with R Rigorous Mathematical Analysis
Mathematical Analysis for Machine Learning and Data Mining
Fundamental Concepts of MATLAB Programming From Learning the Basics to Solving a Problem with MATLAB
Introduction to Data Governance for Machine Learning Systems Fundamental Principles, Critical Practices, and Future Trends
Machine Learning Concepts, Tools And Data Visualization
Hands On Machine Learning with Python Concepts and Applications for Beginners
Introduction to Machine Learning in the Cloud with Python: Concepts and Practices
Demystifying Artificial intelligence Simplified AI and Machine Learning concepts for Everyone
No-Code AI Concepts and Applications in Machine Learning, Visualization, and Cloud Platforms
No-Code AI Concepts and Applications in Machine Learning, Visualization, and Cloud Platforms
Artificial Intelligence and Machine Learning for Smart Community: Concepts and Applications
Computational and Analytic Methods in Biological Sciences Bioinformatics with Machine Learning and Mathematical Modelling
Computational and Analytic Methods in Biological Sciences Bioinformatics with Machine Learning and Mathematical Modelling
Machine Learning for Business Analytics: Concepts, Techniques and Applications with JMP Pro
Machine Learning and Big data Concepts, Algorithms, Tools and Applications
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Evaluating Machine Learning Models A Beginner|s Guide to Key Concepts and Pitfalls
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Machine Learning for Business How to Build Artificial Intelligence through Concepts of Statistics, Algorithms, Analysis, and Data Mining
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Machine Learning for Sustainable Manufacturing in Industry 4.0 (Mathematical Engineering, Manufacturing, and Management Sciences)
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models