BOOKS - PROGRAMMING - Machine Learning Concepts, Tools And Data Visualization
Machine Learning Concepts, Tools And Data Visualization - Minsoo Kang, Eunsoo Choi 2021 PDF World Scientific Publishing BOOKS PROGRAMMING
ECO~14 kg CO²

1 TON

Views
75150

Telegram
 
Machine Learning Concepts, Tools And Data Visualization
Author: Minsoo Kang, Eunsoo Choi
Year: 2021
Pages: 296
Format: PDF
File size: 118.4 MB
Language: ENG



Pay with Telegram STARS
Machine Learning Concepts, Tools, and Data Visualization = Introduction In today's rapidly evolving technological landscape, it is crucial to understand the process of technology evolution and its impact on humanity. As we move forward in this digital age, it becomes increasingly important to develop a personal paradigm for perceiving the technological process of developing modern knowledge. This book serves as a comprehensive guide to the field of Machine Learning (ML), providing an overview of its history, concepts, tools, and data visualization techniques. It is tailored for those who are unfamiliar with mathematics and programming, making it accessible to a wide range of readers. Part I: Overview of AI, ML, and DS ### History of AI, ML, and DS Artificial Intelligence (AI) has been a topic of interest for decades, with early attempts at creating machines that could simulate human intelligence dating back to the 1950s. The field has evolved significantly since then, with the emergence of Machine Learning (ML) and Deep Learning (DL) as key components of AI. This section provides a brief overview of the history of AI, ML, and Data Science (DS), highlighting notable systems and their applications. ### Case Studies Real-world examples of successful AI systems are presented, including: * Image recognition systems used in selfdriving cars * Natural Language Processing (NLP) applications in chatbots and voice assistants * Predictive analytics in healthcare and finance Part II: Azure Machine Learning - ### Introduction to Azure ML This section introduces Azure Machine Learning, an open-source platform for developing, training, and deploying ML models. It covers the basics of ML and provides step-by-step instructions on how to use Azure ML.
Концепции машинного обучения, инструменты и визуализация данных = Введение В современном быстро развивающемся технологическом ландшафте крайне важно понимать процесс эволюции технологий и его влияние на человечество. По мере продвижения вперед в эту цифровую эпоху становится все более важной разработка личностной парадигмы восприятия технологического процесса развития современных знаний. Эта книга служит исчерпывающим руководством в области машинного обучения (ML), предоставляя обзор его истории, концепций, инструментов и методов визуализации данных. Она заточена под тех, кто незнаком с математикой и программированием, благодаря чему доступна широкому кругу читателей. Часть I: Обзор ИИ, ML и DS История ИИ, ML и DS Artificial Intelligence (AI) была темой интереса на протяжении десятилетий, с ранних попыток создания машин, которые могли бы имитировать человеческий интеллект, начиная с 1950-х годов. С тех пор эта область значительно эволюционировала, с появлением машинного обучения (ML) и глубокого обучения (DL) в качестве ключевых компонентов ИИ. В этом разделе представлен краткий обзор истории ИИ, ML и Data Science (DS) с выделением заметных систем и их приложений. Тематические исследования Представлены реальные примеры успешных систем ИИ, в том числе: * Системы распознавания изображений, используемые в самоуправляемых автомобилях * Приложения обработки естественного языка (NLP) в чат-ботах и голосовых помощниках * Предиктивная аналитика в здравоохранении и финансах Часть II: Azure Machine arning - Введение в Azure ML В этом разделе представлен Azure Machine arning - платформа с открытым исходным кодом для разработки, обучения и развертывания ML-моделей. Он охватывает основы ML и предоставляет пошаговые инструкции по использованию Azure ML.
Concepts d'apprentissage automatique, outils et visualisation de données = Introduction Dans le paysage technologique en évolution rapide d'aujourd'hui, il est essentiel de comprendre le processus d'évolution de la technologie et son impact sur l'humanité. À mesure que nous progressons dans cette ère numérique, il devient de plus en plus important de développer un paradigme personnel pour percevoir le processus technologique du développement des connaissances modernes. Ce livre sert de guide complet dans le domaine de l'apprentissage automatique (ML), offrant un aperçu de son histoire, de ses concepts, de ses outils et de ses méthodes de visualisation des données. Il est enfermé sous ceux qui ne connaissent pas les mathématiques et la programmation, ce qui permet d'accéder à un large éventail de lecteurs. Partie I : Aperçu de l'IA, ML et DS L'histoire de l'IA, ML et DS Intelligence Artificielle (AI) a été un sujet d'intérêt pendant des décennies, depuis les premières tentatives de créer des machines qui pourraient imiter l'intelligence humaine, à partir des années 1950. Depuis, ce domaine a considérablement évolué, avec l'émergence du machine learning (ML) et du deep learning (DL) comme éléments clés de l'IA. Cette section donne un bref aperçu de l'histoire de l'IA, de la ML et de la science des données (DS), en mettant en évidence les systèmes visibles et leurs applications. Études de cas Des exemples concrets de systèmes d'IA réussis sont présentés, notamment : * Systèmes de reconnaissance d'images utilisés dans les voitures autonomes * Applications de traitement du langage naturel (PLN) dans les chatbots et les assistants vocaux * Analyse prédictive en santé et finances Partie II : Azure Machine arning - Introduction à Azure ML Cette section présente Azure Machine arning, une plateforme open source pour le développement, la formation et le déploiement de modèles ML. Il couvre les bases de ML et fournit des instructions étape par étape sur la façon d'utiliser Azure ML.
Conceptos de Machine arning, Herramientas y Visualización de Datos = Introducción En el panorama tecnológico en rápida evolución actual, es fundamental comprender el proceso de evolución de la tecnología y su impacto en la humanidad. A medida que avanzamos en esta era digital, es cada vez más importante desarrollar el paradigma personal de la percepción del proceso tecnológico del desarrollo del conocimiento moderno. Este libro sirve como una guía exhaustiva en el campo del aprendizaje automático (ML), proporcionando una visión general de su historia, conceptos, herramientas y métodos de visualización de datos. Está afilada para aquellos que no tienen conocimiento de las matemáticas y la programación, gracias a lo cual está disponible para una amplia gama de lectores. Parte I: Revisión de IA, ML y DS La historia de IA, ML y DS Inteligencia Artificial (IA) ha sido un tema de interés durante décadas, desde los primeros intentos de crear máquinas que pudieran imitar la inteligencia humana a partir de la década de 1950. Desde entonces, esta área ha evolucionado significativamente, con la aparición del aprendizaje automático (ML) y el aprendizaje profundo (DL) como componentes clave de la IA. Esta sección ofrece una breve descripción de la historia de IA, ML y Data Science (DS), resaltando los sistemas notables y sus aplicaciones. Estudios de casos Se presentan ejemplos reales de sistemas de IA exitosos, entre ellos: * stemas de reconocimiento de imágenes utilizados en vehículos autónomos * Aplicaciones de procesamiento de lenguaje natural (NLP) en chatbots y asistentes de voz * Análisis predictivo en salud y finanzas Parte II: Azure Machine arning - Introducción a Azure ML Esta sección presenta Azure Machine arning, una plataforma de código abierto para el desarrollo, aprendizaje e implementación de modelos ML. Cubre los conceptos básicos de ML y proporciona instrucciones paso a paso sobre el uso de Azure ML.
Conceitos de aprendizado de máquina, ferramentas e visualização de dados = Introdução na paisagem tecnológica moderna em rápido desenvolvimento é essencial compreender a evolução da tecnologia e seus efeitos na humanidade. À medida que avançamos nesta era digital, é cada vez mais importante desenvolver um paradigma pessoal de percepção do processo tecnológico para o desenvolvimento do conhecimento moderno. Este livro serve de guia exaustiva para o aprendizado de máquinas (ML), fornecendo uma visão geral da sua história, conceitos, ferramentas e métodos de visualização de dados. Ela está presa sob aqueles que não conhecem matemática e programação, o que faz com que uma grande variedade de leitores esteja disponível. Parte I: A revisão da IA, ML e DS História da IA, ML e DS Inteligência Artística (AI) foi um tema de interesse durante décadas, desde as primeiras tentativas de construção de máquinas que poderiam simular a inteligência humana desde os anos 50. Desde então, essa área evoluiu significativamente, com o surgimento do aprendizado de máquina (ML) e do aprendizado profundo (DL) como componentes essenciais da IA. Esta seção apresenta um resumo da história da IA, ML e Data Science (DS), destacando os sistemas visíveis e seus aplicativos. Estudos de caso São apresentados exemplos reais de sistemas de IA bem-sucedidos, incluindo: * stemas de reconhecimento de imagem usados em carros autônomos * Aplicativos de Tratamento de Linguagem Natural (NLP) em bate-botas e assistentes de voz * Analista Predittivo em Saúde e Finanças Parte II: Azure Machine arning - Introdução no Azure ML Esta seção apresenta a Azure Machine arning, uma plataforma de código aberto para o desenvolvimento, treinamento e implementação de modelos ML. Ele abrange as bases do ML e fornece instruções passo a passo sobre o uso do Azure ML.
Concetti di apprendimento automatico, strumenti e visualizzazione dei dati = Introduzione In un panorama tecnologico in continua evoluzione, è fondamentale comprendere l'evoluzione della tecnologia e il suo impatto sull'umanità. Mentre progredisce in questa era digitale, diventa sempre più importante sviluppare un paradigma di percezione personale del processo tecnologico per lo sviluppo delle conoscenze moderne. Questo libro fornisce una guida completa all'apprendimento automatico (ML), fornendo una panoramica della sua storia, concetti, strumenti e metodi di visualizzazione dei dati. È imprigionata sotto coloro che non conoscono la matematica e la programmazione, rendendo disponibile una vasta gamma di lettori. Parte I: La panoramica di IA, ML e DS Storia dell'IA, ML e DS Artificial Intelligence (AI) è stato un tema di interesse per decenni, fin dai primi tentativi di creare macchine che potessero imitare l'intelligenza umana dagli annì 50. Da allora questa area si è evoluta notevolmente, con l'introduzione dell'apprendimento automatico (ML) e dell'apprendimento approfondito (DL) come componenti chiave dell'IA. Questa sezione fornisce una breve panoramica della storia dell'IA, dell'ML e di Data Science (DS) che evidenzia i sistemi visibili e le relative applicazioni. Studi di caso Presenti esempi reali di sistemi di IA di successo, tra cui: * stemi di riconoscimento immagine utilizzati in auto autosufficienti * Applicazioni di gestione del linguaggio naturale (NLP) in chat-bot e assistenti vocali * Analisi predittiva in sanità e finanza Parte II: Azure Machine arning - Introduzione a Azure ML Questa sezione presenta Azure Machine arning, una piattaforma open source per lo sviluppo, la formazione e l'implementazione di modelli ML. Include le basi di ML e fornisce istruzioni passo per l'utilizzo di Azure ML.
Machine arning Konzepte, Tools und Datenvisualisierung = Einführung In der heutigen schnelllebigen Technologielandschaft ist es entscheidend, den technologischen Evolutionsprozess und seine Auswirkungen auf die Menschheit zu verstehen. Mit dem Fortschritt in diesem digitalen Zeitalter wird es immer wichtiger, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens zu entwickeln. Dieses Buch dient als umfassender itfaden im Bereich des maschinellen rnens (ML) und bietet einen Überblick über seine Geschichte, Konzepte, Werkzeuge und Methoden der Datenvisualisierung. Es ist auf diejenigen zugeschnitten, die mit Mathematik und Programmierung nicht vertraut sind, wodurch es einem breiten serkreis zugänglich ist. Teil I: Überblick über KI, ML und DS Die Geschichte von KI, ML und DS Artificial Intelligence (AI) ist seit Jahrzehnten ein Thema von Interesse, seit den frühen Versuchen, Maschinen zu bauen, die menschliche Intelligenz nachahmen könnten, beginnend in den 1950er Jahren. Seitdem hat sich dieser Bereich erheblich weiterentwickelt, mit dem Aufkommen von Machine arning (ML) und Deep arning (DL) als Schlüsselkomponenten der KI. Dieser Abschnitt bietet einen kurzen Überblick über die Geschichte von KI, ML und Data Science (DS) und hebt bemerkenswerte Systeme und ihre Anwendungen hervor. Fallstudien Reale Beispiele für erfolgreiche KI-Systeme werden vorgestellt, darunter: * Bilderkennungssysteme für selbstfahrende Autos * Anwendungen der Natural Language Processing (NLP) in Chatbots und Sprachassistenten * Predictive Analytics im Gesundheitswesen und im Finanzwesen Teil II: Azure Machine arning - Einführung in Azure ML In diesem Abschnitt wird Azure Machine arning vorgestellt, eine Open-Source-Plattform zur Entwicklung, Schulung und Bereitstellung von ML-Modellen. Es behandelt die ML-Grundlagen und bietet Schritt-für-Schritt-Anleitungen zur Verwendung von Azure ML.
''
Makine Öğrenimi Kavramları, Araçları ve Veri Görselleştirme = Giriş Günümüzün hızla gelişen teknolojik ortamında, teknolojinin evrimini ve insanlık üzerindeki etkisini anlamak çok önemlidir. Bu dijital çağda ilerledikçe, modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigma geliştirmek giderek daha önemli hale geliyor. Bu kitap, makine öğrenimi (ML) için kapsamlı bir rehber olarak hizmet etmekte ve geçmişine, kavramlarına, araçlarına ve veri görselleştirme yöntemlerine genel bir bakış sunmaktadır. Matematik ve programlamaya aşina olmayanlar için uyarlanmıştır, bu sayede çok çeşitli okuyuculara açıktır. Bölüm I: AI, ML ve DS'nin gözden geçirilmesi AI, ML ve DS Yapay Zekanın (AI) tarihi, 1950'lerden başlayarak insan zekasını taklit edebilecek makineler yaratma girişimleriyle on yıllardır ilgi çeken bir konu olmuştur. Alan, o zamandan beri, makine öğreniminin (ML) ve derin öğrenmenin (DL) AI'nın temel bileşenleri olarak ortaya çıkmasıyla önemli ölçüde gelişti. Bu bölüm, AI, ML ve Data Science'ın (DS) tarihine kısa bir genel bakış sunarak, dikkate değer sistemleri ve uygulamalarını vurgulamaktadır. Case Studies Başarılı AI sistemlerinin gerçek dünyadaki örnekleri sunulmaktadır: * Kendi kendini süren otomobillerde kullanılan görüntü tanıma sistemleri * Chatbotlarda ve sesli asistanlarda doğal dil işleme (NLP) uygulamaları * Sağlık ve finansta öngörücü analitik Bölüm II: Azure Machine arning - Azure ML'ye Giriş Bu bölüm, ML modellerini geliştirmek, eğitmek ve dağıtmak için açık kaynaklı bir platform olan Azure Machine arning'i sunar. ML'nin temellerini kapsar ve Azure ML'nin nasıl kullanılacağına dair adım adım talimatlar sağlar.
مفاهيم التعلم الآلي والأدوات وتصور البيانات = مقدمة في المشهد التكنولوجي سريع التطور اليوم، من الأهمية بمكان فهم تطور التكنولوجيا وتأثيرها على البشرية. بينما نمضي قدمًا في هذا العصر الرقمي، يصبح من المهم أكثر فأكثر تطوير نموذج شخصي لتصور العملية التكنولوجية لتطوير المعرفة الحديثة. يعمل هذا الكتاب كدليل شامل للتعلم الآلي (ML)، حيث يقدم لمحة عامة عن تاريخه ومفاهيمه وأدواته وطرق تصور البيانات. إنه مصمم خصيصًا لأولئك الذين ليسوا على دراية بالرياضيات والبرمجة، وبفضله يتوفر لمجموعة واسعة من القراء. الجزء الأول: مراجعة الذكاء الاصطناعي والذكاء الاصطناعي ML و DS كان تاريخ الذكاء الاصطناعي للذكاء الاصطناعي و ML و DS (AI) موضوعًا مثيرًا للاهتمام لعقود، مع محاولات مبكرة لإنشاء آلات يمكن أن تحاكي الذكاء البشري بدءًا من الخمسينيات. تطور المجال بشكل كبير منذ ذلك الحين، مع ظهور التعلم الآلي (ML) والتعلم العميق (DL) كمكونات رئيسية للذكاء الاصطناعي. يقدم هذا القسم لمحة عامة موجزة عن تاريخ الذكاء الاصطناعي و ML وعلوم البيانات (DS)، مع تسليط الضوء على الأنظمة البارزة وتطبيقاتها. دراسات حالة يتم تقديم أمثلة في العالم الحقيقي لأنظمة الذكاء الاصطناعي الناجحة، بما في ذلك: * أنظمة التعرف على الصور المستخدمة في السيارات ذاتية القيادة * تطبيقات معالجة اللغة الطبيعية (NLP) في روبوتات الدردشة والمساعدين الصوتيين * التحليلات التنبؤية في الرعاية الصحية والتمويل الجزء الثاني: التعلم الآلي Azure - مقدمة إلى Azure ML يقدم هذا القسم Azure Machine arning، وهي منصة مفتوحة المصدر لتطوير وتدريب ونشر نماذج ML. يغطي أساسيات ML ويوفر تعليمات خطوة بخطوة حول كيفية استخدام Azure ML.

You may also be interested in:

Machine Learning Concepts, Tools And Data Visualization
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Introducing Data Science Big data, machine learning, and more, using Python tools
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Machine Learning and Big data Concepts, Algorithms, Tools and Applications
Big Data, IoT, and Machine Learning Tools and Applications
Just Enough Data Science and Machine Learning Essential Tools and Techniques
Just Enough Data Science and Machine Learning Essential Tools and Techniques
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems Second Edition (Third Release)
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems Second Edition (Early Release)
Python for Data Science Master Data Analysis from Scratch, with Business Analytics Tools and Step-by-Step techniques for Beginners. The Future of Machine Learning & Applied Artificial Intelligence
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Machine Learning for Business How to Build Artificial Intelligence through Concepts of Statistics, Algorithms, Analysis, and Data Mining
Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
Learning Pandas 2.0: A Comprehensive Guide to Data Manipulation and Analysis for Data Scientists and Machine Learning Professionals
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)
Machine Learning A Comprehensive, Step-by-Step Guide to Intermediate Concepts and Techniques in Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Machine Learning Interviews: Kickstart Your Machine Learning and Data Career
Python Programming A complete beginners guide on python machine learning, data science and tools (Computer Programming Book 1)
PYTHON PROGRAMMING 2 book in 1 A complete guide from beginner to intermediate on python machine learning, data science, tools (Computer Programming 5)
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More