BOOKS - NETWORK TECHNOLOGIES - Data Science for Cyber-Security
Data Science for Cyber-Security - Nick Heard, Niall Adams, Patrick Rubin-Delanchy 2019 PDF World Scientific Publishing BOOKS NETWORK TECHNOLOGIES
ECO~15 kg CO²

1 TON

Views
948176

 
Data Science for Cyber-Security
Author: Nick Heard, Niall Adams, Patrick Rubin-Delanchy
Year: 2019
Pages: 305
Format: PDF
File size: 20.4 MB
Language: ENG



Data Science for Cybersecurity: A Guide to Understanding and Protecting Our Digital World In today's digital age, cybersecurity has become a critical aspect of our lives. With the rapid growth of technology and the internet, we have become more connected than ever before. However, this interconnectedness has also made us vulnerable to various types of cyber threats. Data science has emerged as a powerful tool to combat these threats and protect our digital world. In this book, we will explore the intersection of data science and cybersecurity, and how it can be used to safeguard our digital assets. The Evolution of Technology To understand the importance of data science in cybersecurity, we need to take a step back and look at the evolution of technology. From the early days of computing to the current era of artificial intelligence and machine learning, technology has come a long way. Each milestone in this journey has brought about new opportunities and challenges. The rise of the internet and the proliferation of smart devices have created an interconnected web of digital systems that are vulnerable to attacks. As a result, cybersecurity has become a vital component of our digital infrastructure. The Need for Personal Paradigm However, simply relying on technology alone is not enough. We need to develop a personal paradigm for perceiving the technological process of developing modern knowledge. This means understanding the underlying principles of technology and its impact on society. By doing so, we can better appreciate the role of data science in cybersecurity and how it can help us navigate the complex digital landscape.
Data Science for Cybersecurity: A Guide to Understanding and Protecting Our Digital World В современную цифровую эпоху кибербезопасность стала важнейшим аспектом нашей жизни. С быстрым ростом технологий и интернета мы стали более связаны, чем когда-либо прежде. Однако эта взаимосвязанность также сделала нас уязвимыми для различных типов киберугроз. Наука о данных стала мощным инструментом для борьбы с этими угрозами и защиты нашего цифрового мира. В этой книге мы рассмотрим пересечение науки о данных и кибербезопасности, а также то, как ее можно использовать для защиты наших цифровых активов. Эволюция технологий Чтобы понять важность науки о данных в кибербезопасности, нам нужно сделать шаг назад и посмотреть на эволюцию технологий. От первых дней вычислений до нынешней эры искусственного интеллекта и машинного обучения технологии прошли долгий путь. Каждая веха в этом путешествии порождала новые возможности и вызовы. Рост интернета и распространение умных устройств создали взаимосвязанную сеть цифровых систем, уязвимых для атак. В результате кибербезопасность стала жизненно важной составляющей нашей цифровой инфраструктуры. Потребность в личной парадигме Однако просто полагаться только на технологии недостаточно. Нам нужно выработать личностную парадигму восприятия технологического процесса развития современных знаний. Это означает понимание основополагающих принципов технологии и ее влияния на общество. Тем самым мы сможем лучше оценить роль науки о данных в кибербезопасности и то, как она может помочь нам ориентироваться в сложном цифровом ландшафте.
Data Science for Cybersecurity: A Guide to Understanding and Protecting Our Digital World Nell'era digitale moderna, la sicurezza informatica è diventata un aspetto fondamentale della nostra vita. Con la rapida crescita della tecnologia e di internet siamo più connessi che mai. Ma questa interconnessione ci ha anche reso vulnerabili a diversi tipi di cyberattacco. La scienza dei dati è diventata uno strumento potente per combattere queste minacce e proteggere il nostro mondo digitale. In questo libro esamineremo l'intersezione tra la scienza dei dati e la sicurezza informatica e come può essere utilizzata per proteggere i nostri beni digitali. Evoluzione della tecnologia Per comprendere l'importanza della scienza dei dati nella sicurezza informatica, dobbiamo fare un passo indietro e guardare all'evoluzione della tecnologia. Dai primi giorni di calcolo all'era attuale dell'intelligenza artificiale e dell'apprendimento automatico, la tecnologia ha fatto molta strada. Ogni punto cardine di questo viaggio ha creato nuove opportunità e sfide. La crescita di Internet e la diffusione di dispositivi intelligenti hanno creato una rete interconnessa di sistemi digitali vulnerabili agli attacchi. Di conseguenza, la sicurezza informatica è diventata una componente fondamentale della nostra infrastruttura digitale. La necessità di un paradigma personale Tuttavia, affidarsi solo alla tecnologia non è sufficiente. Dobbiamo sviluppare un paradigma personale per la percezione del processo tecnologico dello sviluppo della conoscenza moderna. Ciò significa comprendere i principi fondamentali della tecnologia e il suo impatto sulla società. In questo modo possiamo valutare meglio il ruolo della scienza dei dati nella sicurezza informatica e il modo in cui può aiutarci a orientarci in un panorama digitale complesso.
''
サイバーセキュリティのためのデータサイエンス:私たちのデジタル世界を理解し、保護するためのガイド現代のデジタル時代において、サイバーセキュリティは私たちの生活の重要な側面となっています。技術とインターネットの急速な成長により、私たちはこれまで以上に接続されています。しかし、この相互接続性により、さまざまな種類のサイバー脅威にも脆弱になりました。データサイエンスは、これらの脅威に対抗し、デジタル世界を保護する強力なツールとなっています。この本では、データサイエンスとサイバーセキュリティの交差点、およびデジタル資産を保護するためにどのように使用できるかについて説明します。技術の進化サイバーセキュリティにおけるデータサイエンスの重要性を理解するためには、一歩戻って技術の進化を見直す必要があります。コンピューティングの初期から人工知能や機械学習の時代に至るまで、テクノロジーは長い道のりを歩んできました。この旅の各マイルストーンは、新しい機会と課題を生み出しました。インターネットの成長とスマートデバイスの普及は、攻撃に対して脆弱なデジタルシステムの相互接続ネットワークを作成しました。その結果、サイバーセキュリティは当社のデジタルインフラの重要な要素となっています。個人的なパラダイムの必要性しかし、単に技術だけに頼るだけでは十分ではありません。私たちは、現代の知識の発展の技術的プロセスの認識のための個人的なパラダイムを開発する必要があります。これは、技術の基本原則と社会への影響を理解することを意味します。これにより、サイバーセキュリティにおけるデータサイエンスの役割と、複雑なデジタルランドスケープのナビゲートにどのように役立つかをよりよく評価することができます。

You may also be interested in:

Ethical Hacking for layman Into the world of cyber security
Recent Advances in Computational Intelligence and Cyber Security
Fundamental of Cyber Security Principles, Theory and Practices
Cyber Persistence Theory Redefining National Security in Cyberspace
Cyber Security in the Age of Artificial Intelligence and Autonomous Weapons
What Every Engineer Should Know About Cyber Security and Digital Forensics, 2nd Edition
Computer and Cyber Security Principles, Algorithm, Applications, and Perspectives
Machine Learning, Blockchain, and Cyber Security in Smart Environments
Machine Learning, Blockchain, and Cyber Security in Smart Environments
Python For Data Science The Ultimate Beginners’ Guide to Learning Python Data Science Step by Step
Learning Data Science: Data Wrangling, Exploration, Visualization, and Modeling with Python
Data Smart Using Data Science to Transform Information into Insight, 2nd Edition
Data Smart Using Data Science to Transform Information into Insight, 2nd Edition
Introducing Data Science Big data, machine learning, and more, using Python tools
Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning
Analytics in a Big Data World The Essential Guide to Data Science and its Applications
Becoming a Data Head How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning
Python Data Science Handbook: Essential Tools for Working with Data
Agile Data Science Building Data Analytics Applications with Hadoop
Introduction to Data Science Data Wrangling and Visualization with R, 2nd Edition
R for Data Science Import, Tidy, Transform, Visualize, and Model Data
Python Data Science Handbook Essential Tools for Working with Data
Data Mining and Exploration From Traditional Statistics to Modern Data Science
Effective Data Science Infrastructure How to Make Data Scientists Productive
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, First Edition
Data Science Essentials with R Learn with focus on data manipulation, visualization, and machine learning
R Graphics Essentials for Great Data Visualization +200 Practical Examples You Want to Know for Data Science
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Humanizing Big Data: Marketing at the Meeting of Data, Social Science and Consumer Insight
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Effective Data Science Infrastructure How to make data scientists productive (MEAP Version 7)
Univariate, Bivariate, and Multivariate Statistics Using R Quantitative Tools for Data Analysis and Data Science
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
The Data Preparation Journey: Finding Your Way with R (Chapman and Hall CRC Data Science Series)
Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
The Real Work of Data Science Turning data into information, better decisions, and stronger organizations
Cybersecurity Today Cyber attacks, network security, and threat prevention
Cyber Security Standards, Practices and Industrial Applications Systems and Methodologies
Cyber Defense and Situational Awareness (Advances in Information Security Book 62)