BOOKS - Introduction to Data Science in Biostatistics Using R, the Tidyverse Ecosyste...
Introduction to Data Science in Biostatistics Using R, the Tidyverse Ecosystem, and APIs - Thomas W. MacFarland 2024 PDF Springer BOOKS
ECO~19 kg CO²

2 TON

Views
82546

Telegram
 
Introduction to Data Science in Biostatistics Using R, the Tidyverse Ecosystem, and APIs
Author: Thomas W. MacFarland
Year: 2024
Pages: 536
Format: PDF
File size: 21.5 MB
Language: ENG



Pay with Telegram STARS
Book Description: 'Introduction to Data Science in Biostatistics Using R the Tidyverse Ecosystem and APIs' is a comprehensive guide that provides a thorough introduction to data science in biostatistics using R and the tidyverse ecosystem. The book covers the fundamentals of R programming, data visualization, and statistical analysis, as well as the use of APIs to obtain and analyze data from various sources. It also explores the application of machine learning techniques to solve real-world problems in healthcare, medicine, and public health. The book is divided into four parts: Part I: Fundamentals of R Programming and Data Visualization; Part II: Statistical Analysis; Part III: Machine Learning Techniques; and Part IV: Real-World Applications. Each part includes practical exercises to help readers apply their knowledge and gain hands-on experience. The book begins by introducing the basics of R programming and data visualization, emphasizing the importance of understanding the process of technology evolution and developing a personal paradigm for perceiving the technological process of developing modern knowledge. The author argues that this perspective is essential for survival in a rapidly changing world and for the unification of people in a warring state.
«Introduction to Data Science in Biostatistics Using R the Tidyverse Ecosystem and APIs» - это всеобъемлющее руководство, которое содержит подробное введение в науку о данных в биостатистике с использованием R и экосистемы tidyverse. Книга охватывает основы программирования R, визуализации данных и статистического анализа, а также использование API для получения и анализа данных из различных источников. В нем также исследуется применение методов машинного обучения для решения реальных проблем в здравоохранении, медицине и здравоохранении. Книга разделена на четыре части: Часть I: Основы программирования R и визуализации данных; Часть II: Статистический анализ; Часть III: Техника машинного обучения; и Часть IV: Реальные приложения. Каждая часть включает практические занятия, которые помогут читателям применить свои знания и получить практический опыт. Книга начинается с введения основ программирования на языке R и визуализации данных, подчёркивая важность понимания процесса эволюции технологий и выработки личностной парадигмы восприятия технологического процесса развития современных знаний. Автор утверждает, что эта перспектива необходима для выживания в быстро меняющемся мире и для объединения людей в воюющем государстве.
''

You may also be interested in:

Python Data Analysis An Introduction to Computer Science Learn Step By Step How to Use Python Programming Language, Pandas
Data Science From Scratch Comprehensive Beginners Guide To Learn Data Science From Scratch
Python for Data Science Comprehensive Guide of Tips and Tricks using Python Data Science
Python for Data Science Advanced and Effective Strategies of Using Python Data Science Theories
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter
Data Science Projects with Python: A case study approach to successful data science projects using Python, pandas, and scikit-learn
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Big Data Demystified: How to use big data, data science and AI to make better business decisions and gain competitive advantage
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Python Data Science An Essential Crash Course Made Accessible to Start Working With Essential Tools, Techniques and Concepts that Help you Learn Python Data Science (python for beginners Book 2)
Business Intelligence An Essential Beginner’s Guide to BI, Big Data, Artificial Intelligence, Cybersecurity, Machine Learning, Data Science, Data Analytics, Social Media and Internet Marketing
Data Just Right Introduction to Large-Scale Data & Analytics
Python for Beginners A Step by Step Guide to Python Programming, Data Science, and Predictive Model. A Practical Introduction to Machine Learning with Python
Python For Data Science The Ultimate Beginners’ Guide to Learning Python Data Science Step by Step
Becoming a Data Head How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning
Introducing Data Science Big data, machine learning, and more, using Python tools
Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning
Data Smart Using Data Science to Transform Information into Insight, 2nd Edition
Analytics in a Big Data World The Essential Guide to Data Science and its Applications
Data Smart Using Data Science to Transform Information into Insight, 2nd Edition
Learning Data Science: Data Wrangling, Exploration, Visualization, and Modeling with Python
R for Data Science Import, Tidy, Transform, Visualize, and Model Data
Effective Data Science Infrastructure How to Make Data Scientists Productive
Python Data Science Handbook: Essential Tools for Working with Data
Python Data Science Handbook Essential Tools for Working with Data
Agile Data Science Building Data Analytics Applications with Hadoop
Data Mining and Exploration From Traditional Statistics to Modern Data Science
The Real Work of Data Science Turning data into information, better decisions, and stronger organizations
Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, First Edition
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Effective Data Science Infrastructure How to make data scientists productive (MEAP Version 7)
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Humanizing Big Data: Marketing at the Meeting of Data, Social Science and Consumer Insight
The Data Preparation Journey: Finding Your Way with R (Chapman and Hall CRC Data Science Series)
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Univariate, Bivariate, and Multivariate Statistics Using R Quantitative Tools for Data Analysis and Data Science
Data Science Essentials with R Learn with focus on data manipulation, visualization, and machine learning