BOOKS - Data Science A First Introduction with Python
Data Science A First Introduction with Python - Tiffany Timbers, Trevor Campbell, Melissa Lee, Joel Ostblom 2025 PDF CRC Press BOOKS
ECO~18 kg CO²

1 TON

Views
19872

Telegram
 
Data Science A First Introduction with Python
Author: Tiffany Timbers, Trevor Campbell, Melissa Lee, Joel Ostblom
Year: 2025
Pages: 452
Format: PDF
File size: 55.0 MB
Language: ENG



Pay with Telegram STARS
The book "Data Science A First Introduction with Python" provides an overview of the field of data science and its applications in various industries. The book covers topics such as data acquisition, cleaning, visualization, analysis, and interpretation, using Python programming language. It also discusses the importance of data science in today's world and its potential impact on society. The book begins by introducing the concept of data science and its relevance in today's world. It highlights the increasing amount of data being generated every day from various sources, such as social media, sensors, and devices, and how this data can be used to gain insights and make informed decisions. The author emphasizes the need for individuals and organizations to understand and work with data to remain competitive and relevant in the digital age. The book then delves into the process of data acquisition, explaining how to collect, store, and preprocess data. It covers various techniques for data cleaning and preparation, including handling missing values, outliers, and data normalization. The author also discusses the importance of data visualization and how it can help in understanding complex data sets. Next, the book explores statistical methods for analyzing data, including regression, hypothesis testing, and time series analysis. These concepts are explained using real-world examples and case studies to illustrate their practical applications. The author also discusses machine learning algorithms, such as decision trees, clustering, and neural networks, and their role in data analysis. The book also covers data visualization tools and libraries, such as Matplotlib and Seaborn, which are essential for presenting data insights effectively.
В книге «Data Science A First Introduction with Python» представлен обзор области науки о данных и её применения в различных отраслях. Книга охватывает такие темы, как сбор данных, очистка, визуализация, анализ и интерпретация, с использованием языка программирования Python. В нем также обсуждается важность науки о данных в современном мире и ее потенциальное влияние на общество. Книга начинается с введения концепции науки о данных и её актуальности в современном мире. В нем подчеркивается растущее количество данных, генерируемых каждый день из различных источников, таких как социальные сети, датчики и устройства, а также то, как эти данные можно использовать для получения информации и принятия обоснованных решений. Автор подчеркивает необходимость того, чтобы отдельные лица и организации понимали и работали с данными, чтобы оставаться конкурентоспособными и актуальными в цифровую эпоху. Затем книга углубляется в процесс сбора данных, объясняя, как собирать, хранить и предварительно обрабатывать данные. Он охватывает различные методы очистки и подготовки данных, включая обработку отсутствующих значений, выбросов и нормализацию данных. Автор также обсуждает важность визуализации данных и то, как она может помочь в понимании сложных наборов данных. Далее в книге рассматриваются статистические методы анализа данных, включая регрессию, проверку гипотез и анализ временных рядов. Эти концепции объясняются с использованием реальных примеров и тематических исследований для иллюстрации их практического применения. Автор также обсуждает алгоритмы машинного обучения, такие как деревья решений, кластеризация и нейронные сети, и их роль в анализе данных. Книга также охватывает инструменты и библиотеки визуализации данных, такие как Matplotlib и Seaborn, которые необходимы для эффективного представления данных.
''

You may also be interested in:

Python for Data Science Advanced and Effective Strategies of Using Python Data Science Theories
Python for Data Science Comprehensive Guide of Tips and Tricks using Python Data Science
Data Science From Scratch Comprehensive Beginners Guide To Learn Data Science From Scratch
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter
Data Science Projects with Python: A case study approach to successful data science projects using Python, pandas, and scikit-learn
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Big Data Demystified: How to use big data, data science and AI to make better business decisions and gain competitive advantage
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Python Data Science An Essential Crash Course Made Accessible to Start Working With Essential Tools, Techniques and Concepts that Help you Learn Python Data Science (python for beginners Book 2)
Business Intelligence An Essential Beginner’s Guide to BI, Big Data, Artificial Intelligence, Cybersecurity, Machine Learning, Data Science, Data Analytics, Social Media and Internet Marketing
Data Just Right Introduction to Large-Scale Data & Analytics
Python for Beginners A Step by Step Guide to Python Programming, Data Science, and Predictive Model. A Practical Introduction to Machine Learning with Python
Python For Data Science The Ultimate Beginners’ Guide to Learning Python Data Science Step by Step
Introducing Data Science Big data, machine learning, and more, using Python tools
Data Smart Using Data Science to Transform Information into Insight, 2nd Edition
Learning Data Science: Data Wrangling, Exploration, Visualization, and Modeling with Python
Becoming a Data Head How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning
Data Smart Using Data Science to Transform Information into Insight, 2nd Edition
Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning
Analytics in a Big Data World The Essential Guide to Data Science and its Applications
Python Data Science Handbook: Essential Tools for Working with Data
Agile Data Science Building Data Analytics Applications with Hadoop
Python Data Science Handbook Essential Tools for Working with Data
Data Mining and Exploration From Traditional Statistics to Modern Data Science
Effective Data Science Infrastructure How to Make Data Scientists Productive
R for Data Science Import, Tidy, Transform, Visualize, and Model Data
Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
Univariate, Bivariate, and Multivariate Statistics Using R Quantitative Tools for Data Analysis and Data Science
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
R Graphics Essentials for Great Data Visualization +200 Practical Examples You Want to Know for Data Science
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
The Data Preparation Journey: Finding Your Way with R (Chapman and Hall CRC Data Science Series)
Humanizing Big Data: Marketing at the Meeting of Data, Social Science and Consumer Insight
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Effective Data Science Infrastructure How to make data scientists productive (MEAP Version 7)
The Real Work of Data Science Turning data into information, better decisions, and stronger organizations
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, First Edition
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Data Science Essentials with R Learn with focus on data manipulation, visualization, and machine learning