BOOKS - Deep Generative Modeling, 2nd Edition
Deep Generative Modeling, 2nd Edition - Jakub M. Tomczak 2024 PDF | EPUB Springer BOOKS
ECO~15 kg CO²

1 TON

Views
29458

Telegram
 
Deep Generative Modeling, 2nd Edition
Author: Jakub M. Tomczak
Year: 2024
Pages: 325
Format: PDF | EPUB
File size: 50.2 MB
Language: ENG



Pay with Telegram STARS
DEEP GENERATIVE MODELING 2ND EDITION A Comprehensive Introduction The second edition of Deep Generative Modeling is a comprehensive introduction to generative models, which are a class of machine learning algorithms that learn to represent and generate data distributions. The book covers the fundamentals of generative modeling, including the basics of probability theory, linear algebra, and neural networks, as well as more advanced topics such as variational inference, normalizing flows, and adversarial training. It also discusses the challenges of deep generative modeling, such as mode collapse and vanishing gradients, and provides practical tips for addressing these issues. The book is divided into four parts: Part I: Basics of Probability Theory and Generative Models This part introduces the reader to the basics of probability theory and generative models, including Bayesian inference and the concept of latent variables. It also covers the basic tools and techniques used in deep generative modeling, such as Markov chains, Gaussian processes, and variational inference. Part II: Neural Networks and Deep Learning In this part, the authors delve into the details of neural networks and their application to deep generative modeling. They cover the basics of neural networks, including the multilayer perceptron, backpropagation, and activation functions, as well as more advanced topics such as convolutional neural networks and recurrent neural networks.
DEEP GENERATIVE MODELING 2ND EDITION A Comprehensive Introduction Второе издание Deep Generative Modeling представляет собой комплексное введение в генеративные модели, представляющие собой класс алгоритмов машинного обучения, которые учатся представлять и генерировать распределения данных. Книга охватывает основы генеративного моделирования, включая основы теории вероятностей, линейной алгебры и нейронных сетей, а также более продвинутые темы, такие как вариационный вывод, нормализация потоков и состязательное обучение. В нем также обсуждаются проблемы глубокого генеративного моделирования, такие как сворачивание режимов и градиенты схода, и даются практические советы по решению этих проблем. Книга разделена на четыре части: Часть I: Основы теории вероятностей и генеративные модели Эта часть знакомит читателя с основами теории вероятностей и генеративными моделями, включая байесовский вывод и концепцию латентных переменных. Он также охватывает основные инструменты и методы, используемые в глубоком генеративном моделировании, такие как цепи Маркова, гауссовы процессы и вариационный вывод. Часть II: Нейронные сети и глубокое обучение В этой части авторы углубляются в детали нейронных сетей и их применение к глубокому генеративному моделированию. Они охватывают основы нейронных сетей, включая многослойный перцептрон, обратное распространение и функции активации, а также более продвинутые темы, такие как сверточные нейронные сети и рекуррентные нейронные сети.
''

You may also be interested in:

College Algebra with Modeling & Visualization, 6th Edition
Engineering Design Graphics Sketching, Modeling, and Visualization, Second Edition
Introduction to Mathematical Modeling and Computer Simulations, 2nd Edition
Computer Modeling Applications for Environmental Engineers, 2nd Edition
Introduction to Mathematical Modeling and Computer Simulations, 2nd Edition
Process Control Modeling, Design, and Simulation, 2nd Edition
Data Modeling with SAP BW 4HANA 2.0: Implementing Agile Data Models Using Modern Modeling Concepts
Graph Data Modeling in Python: A practical guide to curating, analyzing, and modeling data with graphs
Chemically Reacting Flow Theory, Modeling, and Simulation (2nd Edition)
Bayesian Analysis with Python - Third Edition: A practical guide to probabilistic modeling
Engineering Mechanics Statics First Edition. Modeling and Analizing Systems in Equilibrium
Engineering Analysis & Modeling with Excel VBA Course Notes. 9th Edition
Mastering Spark with R The Complete Guide to Large-Scale Analysis and Modeling First Edition
Tabular Modeling in Microsoft SQL Server Analysis Services, 2nd Edition
Spreadsheet Modeling and Decision Analysis A Practical Introduction to Business Analytics, Ninth Edition
The Complete Guide to Blender Graphics Computer Modeling & Animation, 3rd Edition
Financial Modeling and Valuation A Practical Guide to Investment Banking and Private Equity, Second Edition
The Complete Guide to Blender Graphics Computer Modeling & Animation, 5th Edition
The Complete Guide to Blender Graphics Computer Modeling & Animation, 4th Edition
The Complete Guide to Blender Graphics Computer Modeling & Animation Sixth Edition
Body of Knowledge for Modeling and Simulation: A Handbook by the Society for Modeling and Simulation International (Simulation Foundations, Methods and Applications)
Deep Black: Definitive Edition
Deep Learning with R, 2nd Edition
Deep Dark Secrets (Deep Lakes Cozy Mystery Series Book 1)
Deep Dive into Deep Sea Exploring the Most Mysterious Levels of the Ocean
[Deep Wounds, Deep Healing] [By: Kraft, Charles H.] [August, 2010]
Theory of Modeling and Simulation Discrete Event & Iterative System Computational Foundations, 3rd Edition
Architectural Design with SketchUp 3D Modeling, Extensions, BIM, Rendering, Making, Scripting, and Layout, 3rd Edition
Deep Green Envy (Deep Lakes Cozy Mysteries)
Data Modeling Made Simple with Embarcadero ER/Studio Data Architect Adapting to Agile Data Modeling in a Big Data World
Python Deep Learning: Understand how deep neural networks work and apply them to real-world tasks
Fundamentals of Deep Learning, 2nd Edition
Deep Learning with PyTorch, Second Edition (MEAP v5)
Deep Learning with Python, 2nd Edition
Deep Learning with PyTorch, Second Edition (MEAP v3)
Deep Learning with PyTorch, Second Edition (MEAP v5)
BIM Handbook A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers, 3d edition
Introduction to Management Science and Business Analytics A Modeling & Case Studies Approach with Spreadsheets, 7th Edition
Object-Oriented Analysis and Design for Information Systems Modeling with BPMN, OCL, IFML, and Python 2nd Edition
Introduction to Management Science and Business Analytics A Modeling & Case Studies Approach with Spreadsheets, 7th Edition