
BOOKS - Bayesian Analysis with Python - Third Edition: A practical guide to probabili...

Bayesian Analysis with Python - Third Edition: A practical guide to probabilistic modeling
Author: Osvaldo Martin
Year: January 31, 2024
Format: PDF
File size: PDF 41 MB
Language: English

Year: January 31, 2024
Format: PDF
File size: PDF 41 MB
Language: English

Book Description: Bayesian Analysis with Python Third Edition A Practical Guide to Probabilistic Modeling In today's fastpaced technological world, it is essential to understand the process of technology evolution and its impact on humanity. With the rapid development of modern knowledge, it is crucial to develop a personal paradigm for perceiving the technological process and its implications. This book "Bayesian Analysis with Python Third Edition A Practical Guide to Probabilistic Modeling" provides an introduction to the main concepts of applied Bayesian inference and their practical implementation in Python, equipping readers with a working knowledge of probabilistic modeling. As a professional writer, I will provide a detailed description of the plot, highlighting the need and possibility of developing a personal paradigm for understanding the technological process and its significance for human survival. The book begins with a short introduction to probability theory, laying the foundation for the fundamental concepts of Bayesian statistics. Readers will learn about hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and Bayesian additive regression trees (BART). The text is written in a simplified and accessible format, making it easy for readers to comprehend the complex topics. The author, one of the contributors and seasoned Bayesian modelers, has included synthetic and real data sets to introduce various types of models, allowing readers to gain hands-on experience. As the reader progresses through the book, they will become familiar with stateoftheart probabilistic programming libraries like PyMC and ArviZ, as well as other Bayesian libraries such as Bambi PreliZ and Kulprit.
Байесовский анализ с Python Третье издание Практическое руководство по вероятностному моделированию В современном быстро меняющемся технологическом мире важно понимать процесс эволюции технологий и его влияние на человечество. С быстрым развитием современных знаний крайне важно разработать личную парадигму восприятия технологического процесса и его последствий. Эта книга «Байесовский анализ с Python Third Edition A Practical Guide to Probabilistic Modeling» представляет собой введение в основные концепции прикладного байесовского вывода и их практической реализации на Python, снабжая читателей рабочими знаниями вероятностного моделирования. Как профессиональный писатель я приведу подробное описание сюжета, выделив необходимость и возможность выработки личностной парадигмы понимания технологического процесса и его значения для выживания человека. Книга начинается с краткого введения в теорию вероятностей, закладывающего основу фундаментальных концепций байесовской статистики. Читатели узнают об иерархических моделях, обобщенных линейных моделях для регрессии и классификации, моделях смесей, гауссовых процессах и байесовских аддитивных деревьях регрессии (BART). Текст написан в упрощенном и доступном формате, облегчающем читателям осмысление сложных тем. Автор, один из участников и опытных байесовских моделистов, включил синтетические и реальные наборы данных, чтобы представить различные типы моделей, что позволяет читателям получить практический опыт. По мере прохождения книги читатель будет знакомиться с такими библиотеками вероятностного программирования, как PyMC и ArviZ, а также с другими байесовскими библиотеками, такими как Bambi PreliZ и Kulprit.
Analyse bayésienne avec Python Troisième édition Guide pratique de la modélisation probabiliste Dans le monde technologique en évolution rapide d'aujourd'hui, il est important de comprendre le processus d'évolution de la technologie et son impact sur l'humanité. Avec le développement rapide des connaissances modernes, il est essentiel de développer un paradigme personnel de perception du processus technologique et de ses conséquences. Ce livre, « L'analyse bayésienne avec Python Third Edition A Practical Guide to Probabilistic Modeling », est une introduction aux concepts de base de la conclusion bayésienne appliquée et de leur mise en œuvre pratique sur Python, fournissant aux lecteurs une connaissance pratique de la modélisation probabiliste. En tant qu'écrivain professionnel, je vais donner une description détaillée de l'histoire, soulignant la nécessité et la possibilité de développer un paradigme personnel pour comprendre le processus technologique et sa signification pour la survie humaine. livre commence par une brève introduction à la théorie des probabilités, qui pose les bases des concepts fondamentaux des statistiques bayésiennes. s lecteurs découvriront les modèles hiérarchiques, les modèles linéaires généralisés pour la régression et la classification, les modèles de mélanges, les procédés gaussiens et les arbres de régression additifs bayésiens (BART). texte est écrit dans un format simplifié et accessible, ce qui permet aux lecteurs de mieux comprendre les sujets complexes. L'auteur, l'un des participants et des modélisateurs bayésiens expérimentés, a inclus des ensembles de données synthétiques et réelles pour présenter différents types de modèles, ce qui permet aux lecteurs d'acquérir une expérience pratique. À mesure que le livre passe, le lecteur se familiarisera avec les bibliothèques de programmation probabiliste telles que PyMC et ArviZ, ainsi qu'avec d'autres bibliothèques bayésiennes telles que Bambi PreliZ et Kulprit.
Análisis bayesiano con Python Tercera edición Guía práctica de modelado probabilístico En el mundo tecnológico en rápida evolución actual, es importante comprender el proceso de evolución de la tecnología y su impacto en la humanidad. Con el rápido desarrollo del conocimiento moderno, es fundamental desarrollar un paradigma personal de percepción del proceso tecnológico y sus implicaciones. Este libro «Análisis bayesiano con Python Third Edition A Practical Guide to Probabilistic Modeling» es una introducción a los conceptos básicos de la inferencia bayesiana aplicada y su implementación práctica en Python, proporcionando a los lectores conocimientos de trabajo de modelado probabilístico. Como escritor profesional voy a dar una descripción detallada de la trama, destacando la necesidad y la posibilidad de desarrollar un paradigma personal para entender el proceso tecnológico y su significado para la supervivencia humana. libro comienza con una breve introducción a la teoría de la probabilidad, sentando las bases de los conceptos fundamentales de la estadística bayesiana. lectores aprenderán sobre modelos jerárquicos, modelos lineales generalizados para regresión y clasificación, modelos de mezclas, procesos gaussianos y árboles de regresión aditiva bayesiana (BART). texto está escrito en un formato simplificado y accesible que facilita a los lectores la comprensión de temas complejos. autor, uno de los participantes y experimentado modelista bayesiano, ha incorporado conjuntos de datos sintéticos y reales para presentar diferentes tipos de modelos, lo que permite a los lectores adquirir una experiencia práctica. A medida que el libro pase, el lector se familiarizará con bibliotecas de programación probabilística como PyMC y ArviZ, así como con otras bibliotecas bayesianas como Bambi PreliZ y Kulprit.
Bayes'sche Analyse mit Python Dritte Ausgabe Ein praktischer itfaden zur probabilistischen Modellierung In der heutigen sich schnell verändernden technologischen Welt ist es wichtig, den Prozess der Technologieentwicklung und seine Auswirkungen auf die Menschheit zu verstehen. Mit der rasanten Entwicklung des modernen Wissens ist es entscheidend, ein persönliches Paradigma für die Wahrnehmung eines technologischen Prozesses und seiner Folgen zu entwickeln. Dieses Buch „Bayes'sche Analyse mit Python Third Edition A Practical Guide to Probabilistic Modeling“ ist eine Einführung in die grundlegenden Konzepte der angewandten Bayes'schen Inferenz und ihrer praktischen Umsetzung in Python und versorgt die ser mit Arbeitskenntnissen der probabilistischen Modellierung. Als professioneller Schriftsteller werde ich eine detaillierte Beschreibung der Handlung geben und die Notwendigkeit und Möglichkeit hervorheben, ein persönliches Paradigma für das Verständnis des technologischen Prozesses und seiner Bedeutung für das menschliche Überleben zu entwickeln. Das Buch beginnt mit einer kurzen Einführung in die Wahrscheinlichkeitstheorie und legt die Grundlage für grundlegende Konzepte der Bayes'schen Statistik. Die ser lernen hierarchische Modelle, verallgemeinerte lineare Modelle für Regression und Klassifikation, Mischungsmodelle, Gaußsche Prozesse und Bayes'sche additive Regressionsbäume (BART) kennen. Der Text ist in einem vereinfachten und zugänglichen Format verfasst, das es den sern erleichtert, komplexe Themen zu verstehen. Der Autor, einer der Teilnehmer und erfahrenen Bayes'schen Modellierer, hat synthetische und reale Datensätze aufgenommen, um verschiedene Arten von Modellen vorzustellen, die es den sern ermöglichen, praktische Erfahrungen zu sammeln. Im Laufe des Buches wird der ser mit Bibliotheken für probabilistische Programmierung wie PyMC und ArviZ sowie mit anderen bayesischen Bibliotheken wie Bambi PreliZ und Kulprit vertraut gemacht.
''
Python ile Bayes Analizi Üçüncü Baskı Olasılıksal Modelleme için Pratik Bir Kılavuz Günümüzün hızla değişen teknolojik dünyasında, teknolojinin evrimini ve insanlık üzerindeki etkisini anlamak önemlidir. Modern bilginin hızla gelişmesiyle birlikte, teknolojik sürecin ve sonuçlarının algılanması için kişisel bir paradigma geliştirmek son derece önemlidir. "Bayesian Analysis with Python Third Edition A Practical Guide to Probabilistic Modeling'adlı bu kitap, uygulamalı Bayesian çıkarımının temel kavramlarına ve Python'daki pratik uygulamalarına bir giriş niteliğindedir ve okuyuculara olasılıksal modelleme hakkında çalışma bilgisi sağlar. Profesyonel bir yazar olarak, teknolojik süreci ve insanın hayatta kalması için önemini anlamak için kişisel bir paradigma geliştirme ihtiyacını ve olasılığını vurgulayarak, arsa hakkında ayrıntılı bir açıklama yapacağım. Kitap, olasılık teorisine kısa bir giriş ile başlar ve Bayes istatistiğinin temel kavramlarının temelini oluşturur. Okuyucular hiyerarşik modeller, regresyon ve sınıflandırma için genelleştirilmiş doğrusal modeller, karışım modelleri, Gauss süreçleri ve Bayesian katkı regresyon ağaçları (BART'lar) hakkında bilgi edineceklerdir. Metin, okuyucuların karmaşık konuları anlamasını kolaylaştıran basitleştirilmiş ve erişilebilir bir biçimde yazılmıştır. Katkıda bulunanlardan ve deneyimli Bayesian modelleyicilerinden biri olan yazar, farklı model türlerini temsil etmek için sentetik ve gerçek dünya veri kümelerini içererek okuyucuların uygulamalı deneyim kazanmalarını sağladı. Kitap ilerledikçe, okuyucu PyMC ve ArviZ gibi olasılıksal programlama kütüphanelerinin yanı sıra Bambi PreliZ ve Kulprit gibi diğer Bayesian kütüphanelerine aşina olacaktır.
Bayesian Analysis with Python Third Edition دليل عملي للنمذجة الاحتمالية في عالم اليوم التكنولوجي سريع التغير، من المهم فهم تطور التكنولوجيا وتأثيرها على البشرية. مع التطور السريع للمعرفة الحديثة، من المهم للغاية وضع نموذج شخصي لتصور العملية التكنولوجية ونتائجها. هذا الكتاب، «Bayesian Analysis with Python Third Edition A Practical Guide to Probabilistic Modeling»، هو مقدمة للمفاهيم الأساسية لاستدلال Bayesian التطبيقي وتنفيذها العملي في Python، مما يوفر للقراء معرفة عملية عن النمذجة. بصفتي كاتبًا محترفًا، سأقدم وصفًا مفصلاً للحبكة، مع تسليط الضوء على الحاجة وإمكانية تطوير نموذج شخصي لفهم العملية التكنولوجية وأهميتها لبقاء الإنسان. يبدأ الكتاب بمقدمة موجزة لنظرية الاحتمالات، ووضع الأساس للمفاهيم الأساسية للإحصاءات البايزية. سيتعرف القراء على النماذج الهرمية، والنماذج الخطية المعممة للانحدار والتصنيف، ونماذج الخليط، والعمليات الغاوسية، وأشجار الانحدار المضافة البايزية (BARTs). النص مكتوب بتنسيق مبسط ويمكن الوصول إليه يسهل على القراء فهم الموضوعات المعقدة. قام المؤلف، وهو أحد المساهمين ومصممي نماذج بايزي ذوي الخبرة، بتضمين مجموعات بيانات اصطناعية وواقعية لتمثيل أنواع مختلفة من النماذج، مما يسمح للقراء باكتساب خبرة عملية. مع تقدم الكتاب، سيصبح القارئ على دراية بمكتبات البرمجة الاحتمالية مثل PyMC و ArviZ، بالإضافة إلى مكتبات بايزية أخرى مثل Bambi PreliZ و Kulprit.
