BOOKS - Deep Learning with PyTorch, Second Edition (MEAP v5)
Deep Learning with PyTorch, Second Edition (MEAP v5) - Luca Antiga, Eli Stevens, Howard Huang 2024 PDF | EPUB Manning Publications BOOKS
ECO~15 kg CO²

1 TON

Views
121346

Telegram
 
Deep Learning with PyTorch, Second Edition (MEAP v5)
Author: Luca Antiga, Eli Stevens, Howard Huang
Year: 2024
Pages: 326
Format: PDF | EPUB
File size: 27.0 MB
Language: ENG



Book Description: Deep Learning with PyTorch Second Edition MEAP v5 Author: Luca Antiga, Eli Stevens, Howard Huang Manning Publications 2024 Pages: 326 Format: Paperback/E-book Genre: Computer Science, Artificial Intelligence, Machine Learning Summary: In this comprehensive guide, you will embark on a journey to master the art of deep learning with PyTorch, exploring the latest neural network architectures and their practical applications in computer vision tasks. As a beginner or an intermediate machine learning practitioner, you will delve into the fundamentals of neural networks and PyTorch, learning how to implement state-of-the-art models for real-world challenges. The book begins by establishing a solid foundation in image generation using various GAN architectures, followed by leveraging transformer-based models like ViT, TrOCR, BLIP2, and LayoutLM for multitask object detection, facial keypoint recognition, and human pose estimation. You will also discover best practices for tweaking hyperparameters and deploying models to production.
Глубокое обучение с помощью PyTorch Второе издание MEAP v5 Автор: Лука Антига, Эли Стивенс, Говард Хуан Мэннинг Публикации 2024 г. Страницы: 326 Формат: Paperback/E-book Жанр: информатика, искусственный интеллект, машинное обучение Резюме: В этом подробном руководстве вы отправитесь в путешествие, чтобы освоить искусство глубокого обучения с помощью PyTorch, исследуя новейшие архитектуры нейронных сетей и их практическое применение в задачах компьютерного зрения. Как начинающий или промежуточный практик машинного обучения, вы углубитесь в основы нейронных сетей и PyTorch, научитесь внедрять современные модели для реальных задач. Книга начинается с создания прочной основы в генерации изображений с использованием различных архитектур GAN, после чего используются модели на основе трансформеров, такие как ViT, TrOCR, BLIP2 и LayoutLM, для обнаружения многозадачных объектов, распознавания ключевых точек лица и оценки позы человека. Также будут представлены рекомендации по настройке гиперпараметров и развертыванию моделей в производственном режиме.
Aprendizaje profundo con PyTorch Segunda edición de MEAP v5 Autor: Luca Antiga, Eli Stevens, Howard Huang Manning Publicaciones 2024 Páginas: 326 Formato: Paperback/E-book Género: informática, inteligencia artificial, aprendizaje automático Resumen: En esta guía detallada, emprenderá un viaje para dominar el arte del aprendizaje profundo con PyTorch, explorando las últimas arquitecturas de redes neuronales y su aplicación práctica en tareas de visión por ordenador. Como principiante o practicante intermedio del aprendizaje automático, profundizará en los fundamentos de las redes neuronales y PyTorch, aprenderá a implementar modelos modernos para tareas reales. libro comienza creando una base sólida en la generación de imágenes utilizando diferentes arquitecturas de GAN, después de lo cual se utilizan modelos basados en transformadores como ViT, TrOCR, BLIP2 y LayoutLM para detectar objetos multitarea, reconocer puntos clave faciales y evaluar la postura humana. También se presentarán recomendaciones para configurar hiperparámetros y desplegar modelos en modo de producción.
Formazione approfondita con PyTorch Seconda edizione di MEAP v5 Autore: Luca Antiga, Ali Stevens, Howard Juan Manning Pubblicazioni 2024 Pagine: 326 Formato: Paperback/E-book Genere: informatica, intelligenza artificiale, apprendimento automatico Curriculum: In questa guida dettagliata, si intraprenderà un viaggio per imparare l'arte dell'apprendimento profondo con l'aiuto di un PyTorch, esplorando le più recenti architetture delle reti neurali e le loro applicazioni pratiche nelle sfide di visione informatica. Come pratica iniziale o intermedia di apprendimento automatico, si approfondirà le basi delle reti neurali e delle PyTorch, imparando a implementare modelli moderni per le attività reali. Il libro inizia con la creazione di una base solida per la generazione di immagini utilizzando diverse architetture GAN, quindi utilizzando modelli basati su trasformatori come ViT, TrOCR, BLIP2 e LayoutLM, per rilevare gli oggetti multitasking, riconoscere i punti chiave del viso e valutare la posa umana. Vengono inoltre forniti suggerimenti per configurare gli iperparametri e implementare i modelli in modalità di produzione.
''
Deep arning with PyTorch Second Edition MEAP v5著者: Luca Antiga、 Eli Stevens、 Howard Juan Manning Publications 2024ページ: 326形式:ペーパーバック/電子書籍ジャンル:コンピュータサイエンス、人工知能、機械学習の概要: この詳細なガイドでは、PyTorchでディープラーニングの技術を習得し、最新のニューラルネットワークアーキテクチャとコンピュータビジョンタスクの実用的なアプリケーションを探索します。機械学習の初心者または中級実践者として、ニューラルネットワークとPyTorchの基礎を掘り下げ、実際のタスクに現代のモデルを実装する方法を学びます。この本は、さまざまなGANアーキテクチャを使用して画像生成において堅実な基盤を構築することから始まり、その後、ViT、 TrOCR、 BLIP2、 LayoutLMなどのトランスフォーマーベースのモデルを使用して、マルチタスクオブジェクトを検出し、顔のキーポイントを認識し、人の姿勢を評価する。また、ハイパーパラメータを設定してモデルを本番モードで展開する方法も学びます。

You may also be interested in:

Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Learning PyTorch 2.0: Experiment deep learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Deep Learning with PyTorch, Second Edition (MEAP v5)
Deep Learning with PyTorch, Second Edition (MEAP v3)
Deep Learning with PyTorch, Second Edition (MEAP v5)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Mastering Computer Vision with PyTorch 2.0 Discover, Design, and Build Cutting-Edge High Performance Computer Vision Solutions with PyTorch 2.0 and Deep Learning Techniques
Deep Learning with PyTorch, 2nd Ed (MEAP V05)
Deep Learning with PyTorch Guide for Beginners and Intermediate
Deep Learning and AI Superhero Mastering TensorFlow, Keras, and PyTorch Advanced Machine Learning and AI, Neural Networks, and Real-World Projects (Mastering the AI Revolution)
Deep Reinforcement Learning with Python: With PyTorch, TensorFlow and OpenAI Gym
Deep Learning Examples with PyTorch and fastai A Developers| Cookbook
Deep Learning for Coders with fastai and PyTorch AI Applications Without a PhD (Early Release)
Deep Learning for Time Series Cookbook: Use PyTorch and Python recipes for forecasting, classification, and anomaly detection
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Hands-On Natural Language Processing with PyTorch 1.x: Build smart, AI-driven linguistic applications using deep learning and NLP techniques
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Deep Learning with PyTorch Step-by-Step A Beginner|s Guide
Deep Learning with PyTorch Step-by-Step A Beginner|s Guide
Deep Learning with PyTorch Step-by-Step A Beginner|s Guide
Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning
Python Deep learning Develop your first Neural Network in Python Using TensorFlow, Keras, and PyTorch
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Default Loan Prediction Based On Customer Behavior Using Machine Learning And Deep Learning With Python, Second Edition
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)