BOOKS - Deep Learning with PyTorch, Second Edition (MEAP v5)
Deep Learning with PyTorch, Second Edition (MEAP v5) - Luca Antiga, Eli Stevens, Howard Huang 2024 PDF | EPUB Manning Publications BOOKS
ECO~15 kg CO²

1 TON

Views
36318

Telegram
 
Deep Learning with PyTorch, Second Edition (MEAP v5)
Author: Luca Antiga, Eli Stevens, Howard Huang
Year: 2024
Pages: 326
Format: PDF | EPUB
File size: 27.0 MB
Language: ENG



Pay with Telegram STARS
The book provides a step-by-step approach to building and training deep learning models, from the basics of tensor operations to advanced techniques such as transfer learning and domain adaptation. The book also covers the latest advancements in deep learning research, including attention mechanisms, transformers, and generative models. With this book, readers will gain a solid understanding of the principles of deep learning and the skills to implement them in real-world applications. The book is divided into four parts: Part I: Fundamentals of Deep Learning, Part II: Building and Training Deep Learning Models, Part III: Applications of Deep Learning, and Part IV: Advanced Topics in Deep Learning. Each part builds upon the previous one, providing a comprehensive overview of the field of deep learning and its applications. The book is written in an accessible and easy-to-understand style, making it suitable for both beginners and experienced practitioners who want to learn about deep learning and its applications.
В книге представлен пошаговый подход к построению и обучению моделей глубокого обучения, от основ тензорных операций до передовых техник, таких как трансферное обучение и адаптация доменов. Книга также охватывает последние достижения в области исследований глубокого обучения, включая механизмы внимания, трансформаторы и генеративные модели. С помощью этой книги читатели получат твердое понимание принципов глубокого обучения и навыки их реализации в реальных приложениях. Книга разделена на четыре части: Часть I: Основы глубокого обучения, Часть II: Построение и обучение моделей глубокого обучения, Часть III: Применение глубокого обучения и Часть IV: Продвинутые темы в глубоком обучении. Каждая часть основывается на предыдущей, предоставляя всесторонний обзор области глубокого обучения и его приложений. Книга написана в доступном и простом для понимания стиле, что делает ее подходящей как для начинающих, так и для опытных практиков, которые хотят узнать о глубоком обучении и его приложениях.
''

You may also be interested in:

Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0: Experiment deep learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Deep Learning with PyTorch, Second Edition (MEAP v5)
Deep Learning with PyTorch, Second Edition (MEAP v3)
Deep Learning with PyTorch, Second Edition (MEAP v5)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Mastering Computer Vision with PyTorch 2.0 Discover, Design, and Build Cutting-Edge High Performance Computer Vision Solutions with PyTorch 2.0 and Deep Learning Techniques
Deep Learning with PyTorch Guide for Beginners and Intermediate
Deep Learning with PyTorch, 2nd Ed (MEAP V05)
Deep Learning and AI Superhero Mastering TensorFlow, Keras, and PyTorch Advanced Machine Learning and AI, Neural Networks, and Real-World Projects (Mastering the AI Revolution)
Deep Learning Examples with PyTorch and fastai A Developers| Cookbook
Deep Reinforcement Learning with Python: With PyTorch, TensorFlow and OpenAI Gym
Deep Learning for Coders with fastai and PyTorch AI Applications Without a PhD (Early Release)
Deep Learning for Time Series Cookbook: Use PyTorch and Python recipes for forecasting, classification, and anomaly detection
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Hands-On Natural Language Processing with PyTorch 1.x: Build smart, AI-driven linguistic applications using deep learning and NLP techniques
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Deep Learning with PyTorch Step-by-Step A Beginner|s Guide
Deep Learning with PyTorch Step-by-Step A Beginner|s Guide
Deep Learning with PyTorch Step-by-Step A Beginner|s Guide
Python Deep learning Develop your first Neural Network in Python Using TensorFlow, Keras, and PyTorch
Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Default Loan Prediction Based On Customer Behavior Using Machine Learning And Deep Learning With Python, Second Edition
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)