BOOKS - The Art of Data Science A Practitioner's Guide
The Art of Data Science A Practitioner
ECO~14 kg CO²

1 TON

Views
96058

Telegram
 
The Art of Data Science A Practitioner's Guide
Author: Douglas A. Gray
Year: 2025
Pages: 219
Format: PDF | EPUB
File size: 12.2 MB
Language: ENG



Pay with Telegram STARS
Edward Lavieri, is a comprehensive guide that provides a broad overview of data science and its applications in various fields. It covers topics such as machine learning, deep learning, data visualization, big data analytics, and more. The book begins by introducing the concept of data science and its importance in today's world. The author emphasizes the need to develop a personal paradigm for understanding the technological process of developing modern knowledge, which he believes is essential for the survival of humanity and the unity of people in a warring state. He argues that this paradigm should be based on the principles of creativity, critical thinking, and collaboration, rather than on traditional methods of scientific inquiry. The book then delves into the history of data science, tracing its evolution from ancient times to the present day. The author highlights the key milestones and breakthroughs that have shaped the field, including the development of computers, the internet, and artificial intelligence. He also explores the impact of data science on society, including its role in business, healthcare, education, and other areas.
Edward Lavieri, является всеобъемлющим руководством, которое предоставляет широкий обзор науки о данных и ее приложений в различных областях. Он охватывает такие темы, как машинное обучение, глубокое обучение, визуализация данных, аналитика больших данных и многое другое. Книга начинается с введения концепции науки о данных и её важности в современном мире. Автор подчеркивает необходимость выработки личностной парадигмы понимания технологического процесса развития современных знаний, которые, по его мнению, необходимы для выживания человечества и единства людей в воюющем государстве. Он утверждает, что эта парадигма должна основываться на принципах творчества, критического мышления и сотрудничества, а не на традиционных методах научного исследования. Затем книга углубляется в историю науки о данных, прослеживая её эволюцию от древних времён до наших дней. Автор выделяет ключевые вехи и прорывы, которые сформировали эту область, включая развитие компьютеров, интернета и искусственного интеллекта. Он также исследует влияние науки о данных на общество, в том числе ее роль в бизнесе, здравоохранении, образовании и других областях.
''

You may also be interested in:

Computer Science in Sport: Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R
Computer Science in Sport Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Data Science in Chemistry: Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter
Data Smart: Using Data Science, 2nd Ed. Jordan Goldmeier
Advances in Data Science Symbolic, Complex, and Network Data
Data Science and Big Data Analytics in Smart Environments
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Beginning Mathematica and Wolfram for Data Science: Applications in Data Analysis, Machine Learning, and Neural Networks
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Essential Math for Data Science Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics (Third Early Release)
Data Science in Chemistry Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter (De Gruyter Textbook)
Python Data Science The Ultimate Crash Course, Tips, and Tricks to Learn Data Analytics, Machine Learning, and Their Application
Data Science Fundamentals with R, Python, and Open Data
Data Science Fundamentals with R, Python, and Open Data
Data Science with Python From Data Wrangling to Visualization
Data Engineering and Data Science: Concepts and Applications
Data Engineering and Data Science Concepts and Applications
Data Science and Data Analytics Opportunities and Challenges
Data Science Fundamentals with R, Python, and Open Data
Probability and statistics for data science math + R + data
R Programming for Data Science A comprehensive guide to R programming for Data Science
R Programming for Data Science A comprehensive guide to R programming for Data Science
Practical Data Analytics for BFSI Leveraging Data Science for Driving Decisions in Banking, Financial Services, and Insurance Operations
Advanced Data Science and Analytics with Python (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
Data Science An Emerging Trend in Engineering, Science & Technology
Statistical Methods for Materials Science The Data Science of Microstructure Characterization
Data Science An Emerging Trend in Engineering, Science & Technology
Frame Theory in Data Science (Advances in Science, Technology and Innovation)
Теоретический минимум по Computer Science. Сети, криптография и data science
Econometric Python Harnessing Data Science for Economic Analysis The Science of Pythonomics in 2024
Econometric Python: Harnessing Data Science for Economic Analysis: The Science of Pythonomics in 2024
The New Art and Science of Teaching Writing (Research-Based Instructional Strategies for Teaching and Assessing Writing Skills) (The New Art and Science of Teaching Book Series)
Python for Beginners Start Right Now to Learn Computer Programming with the Best Crash Course. Improve your Skills with Machine Learning, Data Analysis and Data Science
Graph Data Science with Python and Neo4j: Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data … Enterprise Strategies (English Edition)
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science: Excel in Data Analysis, Statistical Modeling and Machine Learning by … to optimize workflows (English Edition)
The Art of Tinkering: Meet 150+ Makers Working at the Intersection of Art, Science and Technology
Geospatial Data Science: A Hands-On Approach for Building Geospatial Applications Using Linked Data Technologies (ACM Books)