BOOKS - OS AND DB - Probability and statistics for data science math + R + data
Probability and statistics for data science math + R + data - Matloff, Norman S. 2020 PDF CRC Press BOOKS OS AND DB
ECO~18 kg CO²

1 TON

Views
63866

Telegram
 
Probability and statistics for data science math + R + data
Author: Matloff, Norman S.
Year: 2020
Pages: 445
Format: PDF
File size: 12,9 MB
Language: ENG



Pay with Telegram STARS
Book Description: Probability and Statistics for Data Science Math + R + Data Author: Matloff, Norman S. 2020 Pages: 445 CRC Press Summary: Probability and Statistics for Data Science Math + R + Data is a comprehensive guide to understanding the fundamental concepts of probability and statistics, their application in data science, and the use of R programming language to analyze real-world datasets. The book takes a practical approach to teaching statistical concepts, using real-world examples and datasets to illustrate key ideas. It emphasizes critical thinking and encourages readers to consider the "why" behind statistical techniques, rather than simply memorizing formulas and theorems. The book covers a wide range of topics, including probability distributions, expected value estimation, mixture distributions, random graph models, hidden Markov models, linear and logistic regression, and neural networks. Each chapter builds on previous ones, allowing readers to gradually develop their knowledge and skills in data analysis. The author's focus on mathematical precision and practical applications ensures that readers gain a deep understanding of the subject matter, without getting bogged down in formal proofs.
Вероятность и статистика для Data Science Math + R + Автор данных: Matloff, Norman S. 2020 Pages: 445 CRC Press Summary: Probability and Statistics for Data Science Math + R + Data - это всеобъемлющее руководство по пониманию фундаментальных концепций вероятности и статистики, их применению в науке о данных и использованию языка программирования R для анализа реальных наборов данных. Книга использует практический подход к обучению статистическим концепциям, используя реальные примеры и наборы данных для иллюстрации ключевых идей. Он подчеркивает критическое мышление и призывает читателей рассматривать «почему», стоящие за статистическими методами, а не просто запоминать формулы и теоремы. Книга охватывает широкий круг тем, включая распределения вероятностей, оценку ожидаемых значений, распределения смесей, модели случайных графов, скрытые марковские модели, линейную и логистическую регрессию и нейронные сети. Каждая глава опирается на предыдущие, позволяя читателям постепенно развивать свои знания и навыки в анализе данных. Сосредоточенность автора на математической точности и практических приложениях гарантирует, что читатели получат глубокое понимание предмета, не увязнув в формальных доказательствах.
Probabilità e statistiche per Data Science Math + R + Autore dati: Matloff, Norman S. 2020 Page: 445 CRC Press Summary: Probability and Statistics for Data Science Math + R + Data è una guida completa per la comprensione dei concetti fondamentali di probabilità e statistiche, la loro applicazione nella scienza dei dati e l'uso del linguaggio di programmazione R per l'analisi dei set di dati reali. Il libro utilizza un approccio pratico all'apprendimento dei concetti statistici, utilizzando esempi reali e set di dati per illustrare le idee chiave. Sottolinea il pensiero critico e invita i lettori a considerare il «perché» dietro i metodi statistici, piuttosto che semplicemente ricordare le formule e i teoremi. Il libro comprende una vasta gamma di argomenti, tra cui la distribuzione delle probabilità, la valutazione dei valori previsti, la distribuzione delle miscele, i modelli di grafica casuale, i modelli di marca nascosti, la regressione lineare e logistica e le reti neurali. Ogni capitolo si basa sui precedenti, consentendo ai lettori di sviluppare gradualmente le proprie conoscenze e competenze nell'analisi dei dati. Concentrarsi sull'accuratezza matematica e sulle applicazioni pratiche garantisce ai lettori una profonda comprensione della materia senza essere collegati alle prove formali.
''
Data Science Math+R+Data authorの確率と統計: Matloff、 Norman S。 2020 Pages: 445 CRCプレス要約:データサイエンスの確率と統計Math+R+Dataは、確率と統計の基本的な概念、データサイエンスへの応用、および実際のデータセットを分析するためのRプログラミング言語の使用を理解するための包括的なガイドです。本書は、実際の例とデータセットを使用して、重要なアイデアを説明するために、統計的概念を教えるための実用的なアプローチを取ります。それは批判的思考を強調し、単に数式や定理を暗記するのではなく、統計的方法の背後にある「なぜ」を考えるよう読者を奨励する。この本は、確率分布、予想値の推定、混合分布、ランダムグラフモデル、隠れマルコフモデル、線形および論理回帰、ニューラルネットワークなど、幅広いトピックをカバーしています。各章は前の章に基づいており、読者は徐々にデータ分析の知識とスキルを身につけることができます。数学の正確さと実用的な応用に焦点を当てた著者は、読者が正式な証拠にとらわれずに主題の深い理解を得ることを保証します。

You may also be interested in:

Essential Math for Data Science Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics (Third Early Release)
Probability and statistics for data science math + R + data
Statistics 101 From Data Analysis and Predictive Modeling to Measuring Distribution and Determining Probability, Your Essential Guide to Statistics (Adams 101)
Probability, Statistics and Maths for AI A comprehensive guide to understanding probability, statistics, and mathematics for AI
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Hierarchical Modeling and Analysis for Spatial Data (Chapman and Hall CRC Monographs on Statistics and Applied Probability)
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
Sparse Graphical Modeling for High Dimensional Data (Chapman and Hall CRC Monographs on Statistics and Applied Probability)
Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning
Becoming a Data Head How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning
Data Mining and Exploration From Traditional Statistics to Modern Data Science
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II: Contributions to Probability Theory
Univariate, Bivariate, and Multivariate Statistics Using R Quantitative Tools for Data Analysis and Data Science
First Course In Probability For Computer And Data Science, A
Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume I: Theory of Statistics
Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks
Bayesian Statistics the Fun Way Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks
Advanced Statistics with Applications in R (Wiley Series in Probability and Statistics)
Statistics for Data Science
Statistics and Data Science for Teachers
Statistics for Data Science and Analytics
Statistics for Data Science and Analytics
Statistics and Data Science for Teachers
Statistics and Data Science for Teachers
Principles of managerial statistics and data science
Statistics and Data Visualization in Climate Science with R and Python
Statistics for Health Data Science: An Organic Approach
Machine Learning for Signal Processing Data Science, Algorithms, and Computational Statistics
Probability Theory: A First Course in Probability Theory and Statistics (De Gruyter Textbook)
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Learning Data Science Programming and Statistics Fundamentals Using Python (7th Early Release)
Fake Science Exposing the Left|s Skewed Statistics, Fuzzy Facts, and Dodgy Data
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Asymptotics in Statistics and Probability
Introduction to Probability and Statistics
Recent Advances in Statistics and Probability
Probability and Statistics for Engineers, Fifth Edition
Probability and Statistics (De Gruyter Textbook)
Probability, Statistics, and Random Signals