BOOKS - Probability, Statistics and Maths for AI A comprehensive guide to understandi...
Probability, Statistics and Maths for AI A comprehensive guide to understanding probability, statistics, and mathematics for AI - Et Tu Code 2024 EPUB Independently published BOOKS
ECO~23 kg CO²

2 TON

Views
74936

Telegram
 
Probability, Statistics and Maths for AI A comprehensive guide to understanding probability, statistics, and mathematics for AI
Author: Et Tu Code
Year: 2024
Pages: 657
Format: EPUB
File size: 29.5 MB
Language: ENG



Pay with Telegram STARS
Book Description: The book "Probability Statistics and Maths for AI" is a comprehensive guide to understanding probability, statistics, and mathematics for artificial intelligence (AI) applications. The book covers the fundamental concepts of probability, statistics, and mathematics that are essential for developing intelligent machines. It provides a detailed explanation of the mathematical concepts and their practical applications in AI, making it an ideal resource for students, researchers, and professionals working in the field of AI. The book begins by introducing the concept of probability and its importance in understanding machine learning algorithms. It explains how probability theory forms the foundation of AI and how it can be used to develop predictive models for various applications. The book then delves into statistical inference, which is critical for making predictions based on data. It covers topics such as hypothesis testing, confidence intervals, and regression analysis, providing readers with a solid understanding of statistical methods. The book also explores the principles of linear algebra, calculus, and differential equations, all of which are crucial for developing advanced AI systems. It discusses the use of these mathematical techniques in deep learning, natural language processing, computer vision, and other AI applications. Additionally, the book covers the basics of programming languages ​​such as Python and R, which are commonly used in AI development.
Книга «Probability Statistics and Maths for AI» является всеобъемлющим руководством по пониманию вероятностей, статистики и математики для приложений искусственного интеллекта (ИИ). Книга охватывает фундаментальные понятия вероятности, статистики и математики, которые необходимы для разработки интеллектуальных машин. Он содержит подробное объяснение математических концепций и их практического применения в ИИ, что делает его идеальным ресурсом для студентов, исследователей и профессионалов, работающих в области ИИ. Книга начинается с введения понятия вероятности и её важности в понимании алгоритмов машинного обучения. Он объясняет, как теория вероятностей формирует основу ИИ и как ее можно использовать для разработки прогностических моделей для различных приложений. Затем книга углубляется в статистический вывод, который имеет решающее значение для прогнозирования на основе данных. Он охватывает такие темы, как проверка гипотез, доверительные интервалы и регрессионный анализ, предоставляя читателям четкое понимание статистических методов. Книга также исследует принципы линейной алгебры, исчисления и дифференциальных уравнений, которые имеют решающее значение для разработки передовых систем ИИ. В нем обсуждается использование этих математических методов в глубоком обучении, обработке естественного языка, компьютерном зрении и других приложениях ИИ. Кроме того, книга охватывает основы таких языков программирования, как Python и R, которые обычно используются в разработке ИИ.
''

You may also be interested in:

Probability, Statistics and Maths for AI A comprehensive guide to understanding probability, statistics, and mathematics for AI
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II: Contributions to Probability Theory
Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume I: Theory of Statistics
Bayesian Statistics the Fun Way Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks
Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks
Advanced Statistics with Applications in R (Wiley Series in Probability and Statistics)
Statistics 101 From Data Analysis and Predictive Modeling to Measuring Distribution and Determining Probability, Your Essential Guide to Statistics (Adams 101)
Probability Theory: A First Course in Probability Theory and Statistics (De Gruyter Textbook)
Asymptotics in Statistics and Probability
Introduction to Probability and Statistics
Recent Advances in Statistics and Probability
Probability and Statistics (De Gruyter Textbook)
Probability and Statistics for Engineers, Fifth Edition
Probability, Statistics, and Random Signals
Probability and Statistics for Machine Learning A Textbook
Probability and Statistics for Machine Learning: A Textbook
Unsaturated Soil Mechanics with Probability and Statistics
Probability and Statistics for Machine Learning A Textbook
Probability and Statistics for Engineering and the Sciences, 9th Edition
Probability and Statistics for Engineering and the Sciences, Eighth Edition
Probability, Statistics, and Stochastic Processes for Engineers and Scientists
Probability and Statistics for Computer Scientists, 3rd Edition
Applied Statistics and Probability for Engineers, Seventh Edition
Statistics and Probability with Applications for Engineers and Scientists, 2nd Edition
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability : Volume 3
Schaum|s Outline of Probability and Statistics, 4th Edition
Introduction to Probability and Statistics, Fifteenth Edition, Metric Version
Chance and Stability: Stable Distributions and Their Applications (Modern Probability and Statistics)
Miller & Freund|s Probability and Statistics for Engineers, Ninth Edition
Moment-sos Hierarchy, The Lectures In Probability, Statistics, Computational Geometry, Control
Essential Math for AI Exploring Linear Algebra, Probability and Statistics, Calculus, Optimization Techniques, and More
Essential Math for AI Exploring Linear Algebra, Probability and Statistics, Calculus, Optimization Techniques, and More
Statistical Intervals A Guide for Practitioners and Researchers (Wiley Series in Probability and Statistics) 2nd Edition
Periodically Correlated Random Sequences: Spectral Theory and Practice (Wiley Series in Probability and Statistics)
Statistical Methods for Stochastic Differential Equations (Chapman and Hall CRC Monographs on Statistics and Applied Probability)
Hierarchical Modeling and Analysis for Spatial Data (Chapman and Hall CRC Monographs on Statistics and Applied Probability)
Sparse Graphical Modeling for High Dimensional Data (Chapman and Hall CRC Monographs on Statistics and Applied Probability)
Probability on Graphs: Random Processes on Graphs and Lattices (Institute of Mathematical Statistics Textbooks, Series Number 1)
Essential Math for Data Science Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics (Third Early Release)
Probability and statistics for data science math + R + data