BOOKS - PROGRAMMING - TinyML Machine Learning with TensorFlow on Arduino and Ultra-Lo...
TinyML Machine Learning with TensorFlow on Arduino and Ultra-Low Power Micro-Controllers (Second Early Release) - Pete Warden, Daniel Situnayake 2019-9-27 EPUB O’Reilly Media, Inc. BOOKS PROGRAMMING
ECO~18 kg CO²

1 TON

Views
86894

Telegram
 
TinyML Machine Learning with TensorFlow on Arduino and Ultra-Low Power Micro-Controllers (Second Early Release)
Author: Pete Warden, Daniel Situnayake
Year: 2019-9-27
Pages: 440
Format: EPUB
File size: 25.7 MB
Language: ENG



Pay with Telegram STARS
The book "TinyML Machine Learning with TensorFlow on Arduino and UltraLow Power MicroControllers" is a groundbreaking work that explores the intersection of machine learning and microcontrollers, providing readers with a comprehensive understanding of the technology and its potential applications. The author, a renowned expert in the field, delves into the world of tiny machine learning (TinyML) and its ability to revolutionize the way we approach problem-solving in various industries. With the use of TensorFlow, one of the most popular open-source machine learning frameworks, the book demonstrates how to develop intelligent systems that can run on resource-constrained devices such as Arduino and ultra-low power microcontrollers. The book begins by introducing the concept of TinyML and its significance in today's technological landscape. It highlights the need for developing personal paradigms that can help us perceive the technological process of modern knowledge and its impact on humanity. The author emphasizes the importance of understanding this process to ensure the survival of our species and the unification of people in a warring state. This sets the stage for the rest of the book, which dives deep into the technical aspects of TinyML and its applications. Chapter 1: Introduction to TinyML In the first chapter, the author provides an overview of TinyML, explaining its purpose and the challenges it addresses.
Книга «TinyML Machine arning with TensorFlow on Arduino and UltraLow Power MicroControllers» - это новаторская работа, которая исследует пересечение машинного обучения и микроконтроллеров, предоставляя читателям исчерпывающее понимание технологии и ее потенциальных применений. Автор, известный эксперт в этой области, углубляется в мир крошечного машинного обучения (TinyML) и его способности революционизировать подход к решению проблем в различных отраслях. С использованием TensorFlow, одного из самых популярных фреймворков машинного обучения с открытым исходным кодом, книга демонстрирует, как разрабатывать интеллектуальные системы, которые могут работать на устройствах с ограниченными ресурсами, таких как Arduino и микроконтроллеры со сверхнизким энергопотреблением. Книга начинается с представления концепции TinyML и его значимости в современном технологическом ландшафте. В нем подчеркивается необходимость разработки личностных парадигм, которые могут помочь нам воспринимать технологический процесс современных знаний и его влияние на человечество. Автор подчеркивает важность понимания этого процесса для обеспечения выживания нашего вида и объединения людей в воюющем государстве. Это закладывает основу для остальной части книги, которая углубляется в технические аспекты TinyML и его приложений. Глава 1: Введение в TinyML В первой главе автор дает обзор TinyML, объясняя его назначение и проблемы, с которыми он сталкивается.
libro «TinyML Machine arning with TensorFlow on Arduino and UltraLow Power MicroControllers» es un trabajo pionero que explora la intersección entre el aprendizaje automático y los microcontroladores, proporcionando a los lectores una comprensión exhaustiva de la tecnología y sus posibles aplicaciones. autor, reconocido experto en la materia, se adentra en el mundo del minúsculo aprendizaje automático (TinyML) y su capacidad para revolucionar el enfoque de resolución de problemas en diferentes industrias. Con el uso de TensorFlow, uno de los frameworks de aprendizaje automático de código abierto más populares, el libro demuestra cómo desarrollar sistemas inteligentes que puedan funcionar en dispositivos con recursos limitados, como Arduino y microcontroladores de energía ultra baja. libro comienza presentando el concepto TinyML y su importancia en el panorama tecnológico actual. Destaca la necesidad de desarrollar paradigmas personales que nos puedan ayudar a percibir el proceso tecnológico del conocimiento moderno y su impacto en la humanidad. autor subraya la importancia de entender este proceso para garantizar la supervivencia de nuestra especie y la unión de los seres humanos en un Estado en guerra. Esto sienta las bases para el resto del libro, que profundiza en los aspectos técnicos de TinyML y sus aplicaciones. Capítulo 1: Introducción a TinyML En el primer capítulo, el autor ofrece una visión general de TinyML, explicando su propósito y los problemas que enfrenta.
Il libro « Machine arning with on Arduino and Power» è un lavoro innovativo che esplora l'intersezione tra apprendimento automatico e microcontroller, fornendo ai lettori una comprensione completa della tecnologia e delle sue potenziali applicazioni. L'autore, un noto esperto in questo campo, sta approfondendo il mondo dell'apprendimento automatico (TinyML) e la sua capacità di rivoluzionare l'approccio alla risoluzione dei problemi in diversi settori. Utilizzando il TensorFlow, uno dei framework di apprendimento automatico open source più popolari, il libro dimostra come sviluppare sistemi intelligenti che possono funzionare su dispositivi con risorse limitate, come Arduino e microcontroller a basso consumo energetico. Il libro inizia rappresentando il concetto di TinyML e la sua importanza nel panorama tecnologico moderno. Sottolinea la necessità di sviluppare paradigmi personali che possano aiutarci a percepire il processo tecnologico della conoscenza moderna e il suo impatto sull'umanità. L'autore sottolinea l'importanza di comprendere questo processo per garantire la sopravvivenza della nostra specie e unire le persone in uno stato in guerra. Questo pone le basi per il resto del libro, che si approfondisce negli aspetti tecnici della TinyML e delle sue applicazioni. Capitolo 1: Introduzione al Nel primo capitolo, l'autore fornisce una panoramica del suo nome e dei problemi che deve affrontare.
''
本「ArduinoとUltraLow Power MicroControllersのTinyML Machine arning with TensorFlow」は、機械学習とマイクロコントローラの交差点を探索し、技術とその潜在的なアプリケーションを包括的に理解する画期的な作品です。この分野の著名な専門家である著者は、Tiny Machine arning (TinyML)の世界と、業界を超えた問題へのアプローチ方法を革新する能力を掘り下げています。最も人気のあるオープンソース機械学習フレームワークの1つであるTensorFlowを使用して、Arduinoや超低消費電力マイクロコントローラなどのリソース制約のあるデバイスで実行できるインテリジェントシステムを開発する方法を示しています。TinyMLのコンセプトとその意義を現代の技術風景に紹介することから始まります。それは、現代の知識の技術プロセスとその人類への影響を知覚するのに役立つ個人的なパラダイムを開発する必要性を強調しています。著者は、私たちの種の生存と戦争状態での人々の統一を確保するために、このプロセスを理解することの重要性を強調しています。これは、TinyMLとそのアプリケーションの技術的側面を掘り下げる本の残りの部分の基礎を築きます。第1章:TinyMLの概要第1章では、TinyMLの概要を説明し、その目的と課題について説明します。

You may also be interested in:

TinyML Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers 1st Edition
TinyML Machine Learning with TensorFlow on Arduino and Ultra-Low Power Micro-Controllers (Second Early Release)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Hands-on TinyML Harness the power of Machine Learning on the edge devices
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Tensorflow for Quantitative Finance Transform Financial Analysis with TensorFlow|s Cutting-Edge Machine Learning Techniques (Python Libraries for Finance)
Tensorflow for Quantitative Finance Transform Financial Analysis with TensorFlow|s Cutting-Edge Machine Learning Techniques (Python Libraries for Finance)
Tensorflow for Quantitative Finance: Transform Financial Analysis with TensorFlow|s Cutting-Edge Machine Learning Techniques (Python Libraries for Finance Book 5)
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Learning TensorFlow.js Powerful Machine Learning in javascript
Python Machine Learning for Beginners Learning from Scratch Numpy, Pandas, Matplotlib, Seaborn, SKlearn and TensorFlow 2.0
Machine Learning with TensorFlow
Reinforcement Learning with TensorFlow: A beginner|s guide to designing self-learning systems with TensorFlow and OpenAI Gym
Machine Learning with TensorFlow, 2nd Edition (Final)
Machine Learning Algorithms Using Scikit and TensorFlow Environments
Machine Learning Algorithms Using Scikit and TensorFlow Environments
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Deep Learning and AI Superhero Mastering TensorFlow, Keras, and PyTorch Advanced Machine Learning and AI, Neural Networks, and Real-World Projects (Mastering the AI Revolution)
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition
Machine Learning with Python Master Pandas, Scikit-learn, and TensorFlow for Building Smart IA Models
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition (Early Release)
Machine Learning with Python Master Pandas, Scikit-learn, and TensorFlow for Building Smart IA Models
Google JAX Cookbook Perform Machine Learning and numerical computing with combined capabilities of TensorFlow and NumPy
Google JAX Cookbook Perform Machine Learning and numerical computing with combined capabilities of TensorFlow and NumPy
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems Second Edition (Third Release)
Mastering OpenCV with Python Use NumPy, Scikit, TensorFlow, and Matplotlib to learn Advanced algorithms for Machine Learning through a set of Practical Projects
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems Second Edition (Early Release)
Python Machine Learning for Beginners A Step by Step Approach to Scikit-Learn and TensorFlow
Python Machine Learning for Beginners A Step by Step Approach to Scikit-Learn and TensorFlow
Mastering OpenCV with Python: Use NumPy, Scikit, TensorFlow, and Matplotlib to learn Advanced algorithms for Machine Learning through a set of Practical Projects (English Edition)
Python For Data Analysis A Step By Step Guide To Build Intelligent System Machine Learning, Scikit-Learn, Keras And Tensorflow
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms