BOOKS - Google JAX Cookbook Perform Machine Learning and numerical computing with com...
Google JAX Cookbook Perform Machine Learning and numerical computing with combined capabilities of TensorFlow and NumPy - Zephyr Quent 2024 PDF | AZW3 | EPUB | MOBI GitforGits BOOKS
ECO~15 kg CO²

1 TON

Views
16845

Telegram
 
Google JAX Cookbook Perform Machine Learning and numerical computing with combined capabilities of TensorFlow and NumPy
Author: Zephyr Quent
Year: 2024
Pages: 333
Format: PDF | AZW3 | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The Google JAX Cookbook is a comprehensive guide to using the JAX library, which combines the strengths of TensorFlow and NumPy to perform machine learning and numerical computing tasks. The book covers a wide range of topics, from basic linear algebra to advanced deep learning techniques, and provides practical examples and exercises to help readers master the concepts presented. The book begins by introducing the basics of linear algebra, including vector operations, matrix multiplication, and eigenvalue decomposition. It then delves into more advanced topics such as neural networks, convolutional neural networks, and recurrent neural networks. The authors also cover topics such as transfer learning, data preprocessing, and model evaluation, providing readers with a solid foundation in machine learning and numerical computing. One of the unique aspects of this book is its focus on combining the strengths of TensorFlow and NumPy. TensorFlow is a powerful deep learning framework that excels at building complex models, while NumPy is a versatile numerical computing library that provides efficient array-based operations. By combining these two libraries, readers can leverage the best of both worlds and develop robust and efficient machine learning models. Throughout the book, the authors provide numerous examples and exercises to help readers reinforce their understanding of the concepts presented. These include practical applications such as image classification, natural language processing, and recommendation systems. The book also includes case studies that demonstrate how JAX can be used in real-world scenarios, such as predicting stock prices or analyzing medical imaging data. In addition to its technical content, the book also touches on the broader implications of technology evolution and the need for a personal paradigm for perceiving the technological process of developing modern knowledge.
Google JAX Cookbook - это всеобъемлющее руководство по использованию библиотеки JAX, которая сочетает в себе сильные стороны TensorFlow и NumPy для выполнения задач машинного обучения и численных вычислений. Книга охватывает широкий круг тем, от базовой линейной алгебры до передовых техник глубокого обучения, и содержит практические примеры и упражнения, помогающие читателям освоить представленные концепции. Книга начинается с введения основ линейной алгебры, включая векторные операции, умножение матриц и разложение по собственным значениям. Затем он углубляется в более продвинутые темы, такие как нейронные сети, сверточные нейронные сети и рекуррентные нейронные сети. Авторы также охватывают такие темы, как обучение передаче, предварительная обработка данных и оценка моделей, предоставляя читателям прочную основу для машинного обучения и численных вычислений. Одним из уникальных аспектов этой книги является ее направленность на объединение сильных сторон TensorFlow и NumPy. TensorFlow - это мощный фреймворк для глубокого обучения, который отлично подходит для построения сложных моделей, а NumPy - универсальная библиотека числовых вычислений, обеспечивающая эффективные операции на основе массивов. Комбинируя эти две библиотеки, читатели могут использовать лучшее из обоих миров и разрабатывать надежные и эффективные модели машинного обучения. На протяжении всей книги авторы приводят многочисленные примеры и упражнения, чтобы помочь читателям укрепить свое понимание представленных концепций. К ним относятся практические приложения, такие как классификация изображений, обработка естественного языка и системы рекомендаций. Книга также включает тематические исследования, которые демонстрируют, как JAX можно использовать в реальных сценариях, таких как прогнозирование цен на акции или анализ данных медицинской визуализации. Помимо технического содержания, в книге также затрагиваются более широкие последствия эволюции технологий и необходимость персональной парадигмы восприятия технологического процесса развития современных знаний.
''

You may also be interested in:

Google JAX Cookbook Perform Machine Learning and numerical computing with combined capabilities of TensorFlow and NumPy
Google JAX Cookbook Perform Machine Learning and numerical computing with combined capabilities of TensorFlow and NumPy
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Learning Google Cloud Vertex AI: Build, deploy, and manage machine learning models with Vertex AI (English Edition)
Learning Google Cloud Vertex AI Build, deploy, and manage machine learning models with Vertex AI
Learning Google Cloud Vertex AI Build, deploy, and manage machine learning models with Vertex AI
Official Google Cloud Certified Professional Machine Learning Engineer Study Guide
Official Google Cloud Certified Professional Machine Learning Engineer Study Guide
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Google BigQuery The Definitive Guide Data Warehousing, Analytics, and Machine Learning at Scale, First Edition
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning with Python Cookbook, 2nd Edition
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Data Science on the Google Cloud Platform Implementing End-to-End Real-time Data Pipelines from ingest to machine learning