BOOKS - Building Transformer Models with PyTorch 2.0 NLP, computer vision, and speech...
Building Transformer Models with PyTorch 2.0 NLP, computer vision, and speech processing with PyTorch and Hugging Face - Prem Timsina 2024 PDF | EPUB BPB Publications BOOKS
ECO~15 kg CO²

1 TON

Views
8875

Telegram
 
Building Transformer Models with PyTorch 2.0 NLP, computer vision, and speech processing with PyTorch and Hugging Face
Author: Prem Timsina
Year: 2024
Pages: 310
Format: PDF | EPUB
File size: 12.7 MB
Language: ENG



Pay with Telegram STARS
Book Description: Building Transformer Models with PyTorch 20 NLP computer vision and speech processing with PyTorch and Hugging Face is a comprehensive guide to building transformer models using PyTorch and Hugging Face. The book covers the basics of transformer models, including their architecture, training, and applications in NLP, computer vision, and speech processing. It provides an overview of the current state of the field, the challenges and opportunities of transformer models, and the future directions of research. The book also includes practical examples and exercises to help readers understand and apply the concepts discussed. The book begins by introducing the concept of transformer models and their importance in modern machine learning. It explains how transformer models have revolutionized the field of NLP, computer vision, and speech processing, and how they are being used in a wide range of applications, from language translation to image recognition to speech recognition. The book then delves into the details of transformer model architecture, including the self-attention mechanism, positional encoding, and multi-head attention. The book also discusses the process of training transformer models, including the use of pre-trained models, transfer learning, and fine-tuning. It covers the various techniques for improving the performance of transformer models, such as regularization, early stopping, and hyperparameter tuning.
Создание моделей трансформеров с помощью PyTorch 20 NLP Компьютерное зрение и обработка речи с помощью PyTorch и Hugging Face - это всеобъемлющее руководство по созданию моделей трансформеров с использованием PyTorch и Hugging Face. Книга охватывает основы моделей трансформеров, включая их архитектуру, обучение и применение в НЛП, компьютерном зрении и обработке речи. Он дает обзор текущего состояния месторождения, проблем и возможностей моделей трансформаторов, а также будущих направлений исследований. Книга также включает практические примеры и упражнения, которые помогут читателям понять и применить обсуждаемые концепции. Книга начинается с введения понятия моделей-трансформеров и их важности в современном машинном обучении. В нем объясняется, как модели трансформеров произвели революцию в области НЛП, компьютерного зрения и обработки речи, и как они используются в широком спектре приложений, от перевода языка до распознавания изображений и распознавания речи. Затем книга углубляется в детали архитектуры модели трансформера, включая механизм самостоятельного внимания, позиционное кодирование и внимание с несколькими головами. В книге также обсуждается процесс обучения моделей трансформеров, включая использование предварительно обученных моделей, трансфертное обучение и тонкую настройку. Он охватывает различные методы улучшения производительности моделей трансформаторов, такие как регуляризация, ранняя остановка и настройка гиперпараметров.
''

You may also be interested in:

Building Transformer Models with PyTorch 2.0 NLP, computer vision, and speech processing with PyTorch and Hugging Face
Building Transformer Models with PyTorch 2.0 NLP, computer vision, and speech processing with PyTorch and Hugging Face
Building Transformer Models with PyTorch 2.0: NLP, computer vision, and speech processing with PyTorch and Hugging Face (English Edition)
PyTorch for Building Large Language Models: Leveraging pyTorch to Train, Fine-tune, and Optimize LLMs for Increased Model Accuracy and Performance
LLM, Transformer, RAG AI: Mastering Large Language Models, Transformer Models, and Retrieval-Augmented Generation (RAG) Technology
Applied Natural Language Processing with PyTorch 2.0 Master Advanced NLP Techniques, Transform Text Data into Insights, and Build Scalable AI Models with PyTorch 2.0
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Learning PyTorch 2.0: Experiment deep learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
The Hundred-Page Language Models Book Hands-on with PyTorch
PyTorch for Natural Language Processing Mastery Build powerful dialogue models with Python
PyTorch for Natural Language Processing Mastery Build powerful dialogue models with Python
PyTorch for Natural Language Processing Mastery : Build powerful dialogue models with Python
Pretrain Vision and Large Language Models in Python: End-to-end techniques for building and deploying foundation models on AWS
Natural Language Processing on Oracle Cloud Infrastructure Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face
Решение задач глубокого обучения с использованием фреймворков Pytorch и Pytorch Lightning
Решение задач глубокого обучения с использованием фреймворков Pytorch и Pytorch Lightning
Решение задач глубокого обучения с использованием фреймворков Pytorch и Pytorch Lightning
Решение задач глубокого обучения с использованием фреймворков Pytorch и Pytorch Lightning
Income Statement Semantic Models: Building Enterprise-Grade Income Statement Models with Power BI
Income Statement Semantic Models Building Enterprise-Grade Income Statement Models with Power BI
Income Statement Semantic Models Building Enterprise-Grade Income Statement Models with Power BI
Accelerate Model Training with PyTorch 2.X: Build more accurate models by boosting the model training process
Building Plastic Models
Building Business Models with Machine Learning
Building Plank-on-Frame Ship Models
AI Engineering Building Applications with Foundation Models
Large Scale Warship Models From Kits to Scratch Building
Ship Models From the Age of Sail Building and Enhancing Commercial Kits
Mastering Computer Vision with PyTorch 2.0 Discover, Design, and Build Cutting-Edge High Performance Computer Vision Solutions with PyTorch 2.0 and Deep Learning Techniques
Analytics Engineering with SQL and dbt Building Meaningful Data Models at Scale
Analytics Engineering with SQL and dbt Building Meaningful Data Models at Scale
Building Intelligent Cloud Applications Develop Scalable Models Using Serverless Architectures with Azure
GoLang for Machine Learning: A Hands-on-Guide to Building Efficient, Smart and Scalable ML Models with Go Programming
Machine Learning with Python Master Pandas, Scikit-learn, and TensorFlow for Building Smart IA Models
Machine Learning with Python Master Pandas, Scikit-learn, and TensorFlow for Building Smart IA Models
GoLang for Machine Learning A Hands-on-Guide to Building Efficient, Smart and Scalable ML Models with Go Programming
Building Markets for Knowledge Resources: Emerging Pervasive Models of Innovation in Practice (Innovations, Technology, and Education for Growth)