BOOKS - R Programming Statistical Data Analysis in Research
R Programming Statistical Data Analysis in Research - Kingsley Okoye, Samira Hosseini 2024 PDF Springer BOOKS
ECO~15 kg CO²

1 TON

Views
24039

Telegram
 
R Programming Statistical Data Analysis in Research
Author: Kingsley Okoye, Samira Hosseini
Year: 2024
Pages: 314
Format: PDF
File size: 17.7 MB
Language: ENG



Pay with Telegram STARS
Book Description: R Programming Statistical Data Analysis in Research is a comprehensive guide to using R programming language for statistical data analysis in research. The book covers the basics of R programming, data visualization, and statistical modeling, providing readers with the skills they need to analyze and interpret complex data sets. The book also explores the use of R packages for data manipulation, visualization, and statistical modeling, making it an essential resource for researchers and students in any field who want to learn how to use R effectively. The book begins by introducing the basics of R programming, including variables, loops, and functions, before moving on to more advanced topics such as data visualization, statistical modeling, and package development. Each chapter includes practical exercises and examples to help readers apply their newfound knowledge to real-world data sets. Throughout the book, the authors emphasize the importance of understanding the process of technology evolution and developing a personal paradigm for perceiving the technological process of developing modern knowledge. They argue that this perspective is crucial for survival in today's rapidly changing world, where technological advancements are constantly reshaping our lives and societies.
R Programming Statistical Data Analysis in Research - это всеобъемлющее руководство по использованию языка программирования R для статистического анализа данных в исследованиях. Книга охватывает основы программирования R, визуализации данных и статистического моделирования, предоставляя читателям навыки, необходимые для анализа и интерпретации сложных наборов данных. Книга также исследует использование пакетов R для манипулирования данными, визуализации и статистического моделирования, что делает его важным ресурсом для исследователей и студентов в любой области, которые хотят научиться эффективно использовать R. Книга начинается с введения основ программирования на языке R, включая переменные, циклы и функции, прежде чем перейти к более продвинутым темам, таким как визуализация данных, статистическое моделирование и разработка пакетов. Каждая глава включает практические упражнения и примеры, которые помогут читателям применить свои новообретенные знания к реальным наборам данных. На протяжении всей книги авторы подчеркивают важность понимания процесса эволюции технологий и выработки личностной парадигмы восприятия технологического процесса развития современных знаний. Они утверждают, что эта перспектива имеет решающее значение для выживания в современном быстро меняющемся мире, где технологические достижения постоянно меняют нашу жизнь и общество.
''

You may also be interested in:

Python for Data Analysis The Ultimate Beginner|s Guide to Learn programming in Python for Data Science with Pandas and NumPy, Master Statistical Analysis, and Visualization
Functional Programming in R 4: Advanced Statistical Programming for Data Science, Analysis, and Finance
R Programming: Statistical Data Analysis in Research
R Programming Statistical Data Analysis in Research
Statistical Sciences and Data Analysis: Proceedings of the Third Pacific Area Statistical Conference
Ultimate Python Libraries for Data Analysis and Visualization: Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, … and Statistical Analysis (English
Ultimate Python Libraries for Data Analysis and Visualization Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, Visualization, and Statistical Analysis
Understanding Results with Python 100 Drills for Data Analysis and Statistical Analysis
Understanding Results with Python 100 Drills for Data Analysis and Statistical Analysis
Understanding Results with Python: 100 Drills for Data Analysis and Statistical Analysis
Statistical and Machine-Learning Data Mining Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition
Python for Data Analysis A Basic Guide for Beginners to Learn the Language of Python Programming Codes Applied to Data Analysis with Libraries Software Pandas, Numpy, and IPython
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science: Excel in Data Analysis, Statistical Modeling and Machine Learning by … to optimize workflows (English Edition)
Bioinformatic and Statistical Analysis of Microbiome Data
The Statistical Analysis of Doubly Truncated Data With Applications in R
Statistical and Econometric Methods for Transportation Data Analysis
R Programming Mastering Data Science and Statistical Computing
Guide to Advanced Statistical Analysis in R Advanced data analysis – without tears
Guide to Advanced Statistical Analysis in R Advanced data analysis – without tears
Handbook of Statistical Analysis and Data Mining Applications, 2nd Edition
Statistics Slam Dunk Statistical analysis with R on real NBA data (Final Release)
Bioinformatic and Statistical Analysis of Microbiome Data: From Raw Sequences to Advanced Modeling with QIIME 2 and R
Statistics Slam Dunk Statistical analysis with R on real NBA data (Final Release)
Real Estate Analysis in the Information Age Techniques for Big Data and Statistical Modeling
Python for Beginners Start Right Now to Learn Computer Programming with the Best Crash Course. Improve your Skills with Machine Learning, Data Analysis and Data Science
Trends and Challenges in Categorical Data Analysis: Statistical Modelling and Interpretation (Statistics for Social and Behavioral Sciences)
Python Programming Advanced Applications and Features Object-Oriented Programming, Data Analysis, Artificial Intelligence and Machine Learning with Python
Python for Data Science Data analysis and Deep learning with Python coding and programming
Statistical Methods An Introduction to Basic Statistical Concepts and Analysis, Second Edition
SQL Server Analytical Toolkit: Using Windowing, Analytical, Ranking, and Aggregate Functions for Data and Statistical Analysis
R for Data Analysis in easy steps - R Programming essentials
R for Data Analysis in easy steps - R Programming essentials
Python for Data Science A step-by-step Python Programming Guide to Master Big Data, Analysis, Machine Learning, and Artificial Intelligence
Python Data Science The Bible. The Ultimate Beginner’s Guide to Learn Data Analysis, from the Basics and Essentials, to Advance Content! (Python Programming, Python Crash Course, Coding Made Easy Book
PYTHON 2 Books in 1 Python Programming & Data Science. Master Data Analysis in Less than 7 Days and Discover the Secrets of Machine Learning with Step-by-Step Exercises
The Process of Statistical Analysis in PsychologyThe Process of Statistical Analysis in Psychology
Mastering Python: A Comprehensive Guide to Hardcore Programming, Data Analysis, and Coding Projects