BOOKS - Deep Learning A Practical Introduction
Deep Learning A Practical Introduction - Manel Martinez-Ramon, Meenu Ajith, Aswathy Rajendra Kurup 2024 PDF Wiley BOOKS
ECO~18 kg CO²

1 TON

Views
24219

Telegram
 
Deep Learning A Practical Introduction
Author: Manel Martinez-Ramon, Meenu Ajith, Aswathy Rajendra Kurup
Year: 2024
Pages: 405
Format: PDF
File size: 15.7 MB
Language: ENG



Pay with Telegram STARS
Nielsen. Deep Learning A Practical Introduction by Michael A. Nielsen The book "Deep Learning A Practical Introduction" by Michael A. Nielsen provides a comprehensive overview of deep learning techniques and their applications in various fields such as computer vision, natural language processing, speech recognition, and bioinformatics. It covers the fundamental concepts of deep learning, including neural networks, backpropagation, and gradient descent, as well as more advanced topics such as convolutional neural networks, recurrent neural networks, and transfer learning. The book also discusses the challenges and limitations of deep learning and provides practical advice on how to overcome them. The book begins with an introduction to the basics of deep learning, explaining the concept of neural networks and how they are used to model complex relationships between inputs and outputs. It then delves into the details of the different types of deep learning algorithms, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), and their applications in computer vision, natural language processing, and other areas. The book also covers the importance of data preprocessing, regularization techniques, and optimization methods for training deep learning models.
Нильсен. Deep arning A Practical Introduction by Michael A. Nielsen Книга «Deep arning A Practical Introduction» Майкла А. Нильсена содержит всесторонний обзор методов глубокого обучения и их применения в различных областях, таких как компьютерное зрение, обработка естественного языка, распознавание речи и биоинформатика. Он охватывает фундаментальные концепции глубокого обучения, включая нейронные сети, обратное распространение и градиентный спуск, а также более продвинутые темы, такие как сверточные нейронные сети, рекуррентные нейронные сети и обучение с переносом. В книге также обсуждаются проблемы и ограничения глубокого обучения и даются практические советы о том, как их преодолеть. Книга начинается с введения в основы глубокого обучения, объясняющего концепцию нейронных сетей и то, как они используются для моделирования сложных отношений между входными и выходными данными. Затем он углубляется в детали различных типов алгоритмов глубокого обучения, включая сверточные нейронные сети (CNN) и рекуррентные нейронные сети (RNN), и их применения в компьютерном зрении, обработке естественного языка и других областях. Книга также освещает важность предварительной обработки данных, методов регуляризации и методов оптимизации для обучения моделей глубокого обучения.
''

You may also be interested in:

Deep Learning A Practical Introduction
Deep Learning A Practical Introduction
Deep Learning: A Practical Introduction
First contact with Deep Learning Practical introduction with Keras
Practical Deep Learning A Python-Based Introduction
Introduction to Deep Learning and Neural Networks with Python™ A Practical Guide
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms A Practical Approach Using Python
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Mathematics of Deep Learning: An Introduction
A Visual Introduction to Deep Learning
A Visual Introduction to Deep Learning
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Practical Deep Learning for Cloud and Mobile
Practical Deep Reinforcement Learning with Python
Deep Learning for Computer Vision with SAS An Introduction
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
Deep Learning for Natural Language Processing A Gentle Introduction
Introduction to Deep Learning with complete Python and TensorFlow examples
Deep Learning for Natural Language Processing A Gentle Introduction
Deep Learning for Natural Language Processing: A Gentle Introduction
Demystifying Deep Learning An Introduction to the Mathematics of Neural Networks
Deep Learning Models A Practical Approach for Hands-On Professionals
Practical MATLAB Deep Learning: A Project-Based Approach
Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide
Deep Learning Models A Practical Approach for Hands-On Professionals
Deep Learning Cookbook Practical Recipes to Get Started Quickly
Introduction to Deep Learning for Engineers Using Python and Google Cloud Platform
Federated Deep Learning for Healthcare A Practical Guide with Challenges and Opportunities
Federated Deep Learning for Healthcare A Practical Guide with Challenges and Opportunities