BOOKS - Deep Learning Models A Practical Approach for Hands-On Professionals
Deep Learning Models A Practical Approach for Hands-On Professionals - Jonah Gamba 2024 PDF | EPUB Springer BOOKS
ECO~14 kg CO²

1 TON

Views
851841

Telegram
 
Deep Learning Models A Practical Approach for Hands-On Professionals
Author: Jonah Gamba
Year: 2024
Pages: 211
Format: PDF | EPUB
File size: 65.3 MB
Language: ENG



Book Deep Learning Models - A Practical Approach for Hands-On Professionals Introduction: In today's rapidly evolving technological landscape, it is crucial for professionals to stay ahead of the curve and adapt to the latest advancements in deep learning models. As a hands-on guide, this book provides a practical approach to understanding and implementing deep learning models in various industrial applications. With a focus on accessibility and quick guidance, this resource is perfect for those new to the field who need comprehensive examples and real-world solutions. Chapter 1: Foundations of Deep Learning * Overview of deep learning and its significance in modern technology * Basic information on deep learning algorithms and their limitations * Importance of understanding the evolution of technology and its impact on humanity Chapter 2: Building Deep Learning Models in Python * Data manipulation and preprocessing techniques * Setting up the modeling environment * Introduction to vectors and matrices in deep learning Chapter 3: Evaluating Performance of Multiple Algorithms * Real-world challenges and strategies for addressing them with deep learning * Comparison of different algorithms and their strengths/weaknesses * Techniques for improving model performance Chapter 4: Applications of Deep Learning Models * Industrial applications of deep learning in various fields (healthcare, finance, marketing, etc.
Book Deep arning Models - A Practical Approach for Hands-On Professionals Введение: В современном быстро развивающемся технологическом ландшафте для профессионалов крайне важно оставаться на опережение и адаптироваться к последним достижениям в моделях глубокого обучения. В качестве практического руководства в этой книге представлен практический подход к пониманию и внедрению моделей глубокого обучения в различных промышленных приложениях. С акцентом на доступность и быстрое руководство, этот ресурс идеально подходит для тех, кто впервые в этой области нуждается в комплексных примерах и реальных решениях. Глава 1: Основы глубокого обучения * Обзор глубокого обучения и его значение в современных технологиях * Базовая информация об алгоритмах глубокого обучения и их ограничениях * Важность понимания эволюции технологии и ее влияния на человечество Глава 2: Построение моделей глубокого обучения на Python * Методы манипулирования данными и предварительной обработки * Настройка среды моделирования * Введение в векторы и матрицы глубокого обучения Глава 3: Оценка производительности нескольких алгоритмов * Реальные проблемы и стратегии их решения с помощью глубокого обучения * Сравнение различных алгоритмов и их сильных/слабых сторон * Методы повышения производительности модели Глава 4: Применение моделей глубокого обучения * Промышленные приложения глубокого обучения в различных областях (здравоохранение, финансы, маркетинг и т. Д.).
Book Deep arning Models - A Practical Approach for Hands-On Professionals Introduction : Dans le paysage technologique en évolution rapide d'aujourd'hui, il est essentiel pour les professionnels de rester à l'avant-garde et de s'adapter aux dernières avancées des modèles d'apprentissage profond. Comme guide pratique, ce livre présente une approche pratique pour comprendre et mettre en œuvre des modèles d'apprentissage profond dans différentes applications industrielles. Mettant l'accent sur l'accessibilité et l'orientation rapide, cette ressource est idéale pour ceux qui, pour la première fois dans ce domaine, ont besoin d'exemples complets et de solutions réelles. Chapitre 1 : Bases de l'apprentissage profond * Aperçu de l'apprentissage profond et de son importance dans les technologies modernes * Informations de base sur les algorithmes de l'apprentissage profond et leurs limites * Importance de comprendre l'évolution de la technologie et son impact sur l'humanité Chapitre 2 : Construire des modèles d'apprentissage profond sur Python * Techniques de manipulation et de prétraitement des données * Personnalisation de l'environnement de modélisation * Introduction aux vecteurs et matrices d'apprentissage profond Chapitre 3 : Évaluation des performances de plusieurs algorithmes * Problèmes réels et stratégies pour les résoudre grâce à l'apprentissage approfondi * Comparaison des différents algorithmes et de leurs forces/faiblesses * Méthodes pour améliorer les performances du modèle Chapitre 4 : Application de modèles de deep learning * Applications industrielles de deep learning dans différents domaines (santé, finance, marketing, etc.).
Book Deep Arning Models - A Practical Approach for Hands-On Professionals Introducción: En el panorama tecnológico en rápida evolución de hoy, es fundamental que los profesionales se mantengan al frente y se adapten a los últimos avances en los modelos de aprendizaje profundo. Como guía práctica, este libro presenta un enfoque práctico para entender e implementar modelos de aprendizaje profundo en diferentes aplicaciones industriales. Con un enfoque en la accesibilidad y la orientación rápida, este recurso es ideal para aquellos que necesitan ejemplos integrales y soluciones reales por primera vez en este campo. Capítulo 1: Fundamentos del aprendizaje profundo * Descripción general del aprendizaje profundo y su importancia en la tecnología moderna * Información básica sobre algoritmos de aprendizaje profundo y sus limitaciones * Importancia de comprender la evolución de la tecnología y su impacto en la humanidad Capítulo 2: Construcción de modelos de aprendizaje profundo en Python * Técnicas de manipulación de datos y pretratamiento * Configuración del entorno de modelado * Introducción a los vectores y matrices de aprendizaje profundo Capítulo 3: Evaluación del rendimiento de varios algoritmos * Problemas reales y estrategias para resolverlos a través del aprendizaje profundo * Comparación de diferentes algoritmos y sus puntos fuertes/débiles * Métodos para mejorar el rendimiento del modelo Capítulo 4: Aplicación de modelos de aprendizaje profundo * Aplicaciones de aprendizaje profundo industrial en una variedad de áreas (salud, finanzas, marketing, etc.).
Book Deep arning Models - A Practical Approach for Hands-On Professionals Einführung: In der heutigen schnelllebigen Technologielandschaft ist es für Profis entscheidend, immer einen Schritt voraus zu sein und sich an die neuesten Fortschritte in Deep arning Modellen anzupassen. Als praktische Anleitung bietet dieses Buch einen praktischen Ansatz zum Verständnis und zur Implementierung von Deep-arning-Modellen in verschiedenen industriellen Anwendungen. Mit einem Schwerpunkt auf Zugänglichkeit und schneller Führung ist diese Ressource ideal für diejenigen, die zum ersten Mal in diesem Bereich umfassende Beispiele und reale Lösungen benötigen. Kapitel 1: Grundlagen des Deep arning * Überblick über Deep arning und seine Bedeutung in der modernen Technologie * Grundlegende Informationen über Deep-arning-Algorithmen und ihre Einschränkungen * Die Bedeutung des Verständnisses der Entwicklung der Technologie und ihrer Auswirkungen auf die Menschheit Kapitel 2: Aufbau von Deep-arning-Modellen in Python * Methoden der Datenmanipulation und Vorverarbeitung * Aufbau einer mulationsumgebung * Einführung in Deep-arning-Vektoren und -Matrizen Kapitel 3: Bewertung der istung mehrerer Algorithmen * Reale Probleme und Strategien zu ihrer Lösung durch Deep arning * Vergleich verschiedener Algorithmen und ihrer Stärken/Schwächen * Methoden zur Verbesserung der Modellleistung Kapitel 4: Anwendung von Deep-arning-Modellen * Industrielle Deep-arning-Anwendungen in verschiedenen Bereichen (Gesundheitswesen, Finanzen, Marketing usw.).
''
Derin Öğrenme Modelleri - Uygulamalı Profesyoneller için Pratik Bir Yaklaşım Giriş: Günümüzün hızla gelişen teknoloji ortamında, profesyonellerin eğrinin önünde kalması ve derin öğrenme modellerindeki en son gelişmelere uyum sağlaması kritik öneme sahiptir. Pratik bir rehber olarak, bu kitap çeşitli endüstriyel uygulamalarda derin öğrenme modellerini anlamak ve uygulamak için pratik bir yaklaşım sunmaktadır. Erişilebilirlik ve hızlı rehberliğe odaklanan bu kaynak, alanında ilk kez kapsamlı örneklere ve gerçek dünya çözümlerine ihtiyaç duyanlar için idealdir. Bölüm 1: Derin Öğrenme Temelleri * Derin öğrenmeye ve modern teknolojideki etkilerine genel bir bakış * Derin öğrenme algoritmaları ve sınırlamaları hakkında temel bilgiler * Teknolojinin evrimini ve insanlık üzerindeki etkisini anlamanın önemi Bölüm 2: Python'da Derin Öğrenme Modelleri Oluşturma * Veri Manipülasyonu ve Ön İşleme Yöntemleri * Modelleme Ortamını Yapılandırma * Derin Öğrenme Vektörlerine ve Matrislerine Giriş Bölüm 3: Çoklu Algoritmaların Performansının Değerlendirilmesi * Gerçek Dünya Problemleri ve Derin Öğrenme ile Çözme Stratejileri * Farklı Algoritmaların ve Güçlü/Zayıf Yönlerinin Karşılaştırılması * Model Performansını Geliştirme Yöntemleri Bölüm 4: Derin öğrenme modellerinin uygulanması * Çeşitli alanlarda (sağlık, finans, pazarlama vb.) derin öğrenmenin endüstriyel uygulamaları.
كتاب نماذج التعلم العميق - نهج عملي للمحترفين العمليين مقدمة: في المشهد التكنولوجي سريع التطور اليوم، من الأهمية بمكان للمهنيين البقاء في صدارة المنحنى والتكيف مع أحدث التطورات في نماذج التعلم العميق. كدليل عملي، يقدم هذا الكتاب نهجًا عمليًا لفهم وتنفيذ نماذج التعلم العميق في مختلف التطبيقات الصناعية. مع التركيز على إمكانية الوصول والتوجيه السريع، يعد هذا المورد مثاليًا لأولئك الذين يحتاجون إلى أمثلة شاملة وحلول واقعية لأول مرة في هذا المجال. الفصل 1: أساسيات التعلم العميق * لمحة عامة عن التعلم العميق وآثاره في التكنولوجيا الحديثة * معلومات أساسية عن خوارزميات التعلم العميق وقيودها * أهمية فهم تطور التكنولوجيا وتأثيرها على البشرية الفصل 2: بناء نماذج التعلم العميق في Python * طرق التلاعب بالبيانات ومعالجتها مسبقًا * تكوين بيئة النمذجة * مقدمة إلى نواقل التعلم العميق والمصفوفات الفصل 3: تقييم أداء الخوارزميات المتعددة * مشاكل واستراتيجيات العالم الحقيقي لحلها بالتعلم العميق * مقارنة الخوارزميات المختلفة ونقاط قوتها/ضعفها * طرق تحسين أداء النموذج الفصل 4: تطبيق نماذج التعلم العميق * التطبيقات الصناعية للتعلم العميق في مختلف المجالات (الرعاية الصحية والتمويل والتسويق وما إلى ذلك).

You may also be interested in:

Deep Learning Models A Practical Approach for Hands-On Professionals
Deep Learning Models A Practical Approach for Hands-On Professionals
Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms A Practical Approach Using Python
Practical MATLAB Deep Learning: A Project-Based Approach
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Automated Software Engineering: A Deep Learning-Based Approach (Learning and Analytics in Intelligent Systems Book 8)
Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0: Experiment deep learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Inside Deep Learning Math, Algorithms, Models
Deep Learning A Visual Approach
Inside Deep Learning Math, Algorithms, Models (MEAP)
Emerging Technologies for Healthcare Internet of Things and Deep Learning Models
Practical MLOps Operationalizing Machine Learning Models
The Astrophotography Manual: A Practical and Scientific Approach to Deep Space Imaging
Deep Learning A Practical Introduction
Deep Learning A Practical Introduction
Deep Learning: A Practical Introduction
Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating (Statistics for Biology and Health)
Python A Practical Learning Approach
Python A Practical Learning Approach
Python: A Practical Learning Approach