BOOKS - Deep Learning for Natural Language Processing: A Gentle Introduction
Deep Learning for Natural Language Processing: A Gentle Introduction - Mihai Surdeanu February 8, 2024 PDF  BOOKS
ECO~18 kg CO²

3 TON

Views
13613

Telegram
 
Deep Learning for Natural Language Processing: A Gentle Introduction
Author: Mihai Surdeanu
Year: February 8, 2024
Format: PDF
File size: PDF 97 MB
Language: English



Pay with Telegram STARS
Book Description: Deep Learning for Natural Language Processing A Gentle Introduction Author: Mihai Surdeanu February 8, 2024 Genre: Technology, Artificial Intelligence, Machine Learning, Natural Language Processing Overview: In today's technologydominated world, deep learning has become an essential tool for various fields, including natural language processing (NLP). However, the intricacies of building computational models that accurately represent linguistic structures can be daunting, especially for those without a strong background in mathematics and computer science. This book offers a comprehensive introduction to deep learning for NLP, making it accessible to those from humanities and social sciences backgrounds. Need to Study and Understand the Process of Technological Evolution: The rapid pace of technological advancements in the field of artificial intelligence (AI) has made it imperative for individuals to understand the process of technological evolution. As we move towards a more automated and interconnected world, it is crucial to appreciate the significance of deep learning in NLP. The ability to develop practical applications that cater to the needs of society depends on our capacity to grasp the underlying principles of this technology.
Deep arning for Natural Language Processing A Gentle Introduction Author: Mihai Surdeanu February 8, 2024 Жанр: технологии, искусственный интеллект, машинное обучение, обработка естественного языка Overview: В современном мире, основанном на технологиях, глубокое обучение стало важным инструментом для различных областей, включая обработку естественного языка (NLP). Однако сложности построения вычислительных моделей, точно представляющих лингвистические структуры, могут быть пугающими, особенно для тех, у кого нет сильного опыта в математике и информатике. Эта книга предлагает всеобъемлющее введение в глубокое обучение для НЛП, делая его доступным для людей из гуманитарных и социальных наук. Необходимость изучения и понимания процесса технологической эволюции: быстрые темпы технологического прогресса в области искусственного интеллекта (ИИ) сделали обязательным для людей понимание процесса технологической эволюции. По мере продвижения к более автоматизированному и взаимосвязанному миру крайне важно оценить значение глубокого обучения в НЛП. Способность разрабатывать практические приложения, удовлетворяющие потребности общества, зависит от нашей способности понять основополагающие принципы этой технологии.
Deep arning for Natural Language Processing A Gentle Introduction Author: Mihai Surdeanu Febrero 8, 2024 Género: tecnología, inteligencia artificial, aprendizaje automático, procesamiento de lenguaje natural Resumen: En el mundo actual basado en la tecnología, el aprendizaje profundo se ha convertido en una herramienta importante para diversos campos, incluyendo el procesamiento del lenguaje natural (NLP). n embargo, las dificultades para construir modelos computacionales que representen con precisión las estructuras lingüísticas pueden ser aterradoras, especialmente para aquellos que no tienen una experiencia fuerte en matemáticas e informática. Este libro ofrece una amplia introducción al aprendizaje profundo para la PNL, haciéndolo accesible a las personas de las humanidades y las ciencias sociales. La necesidad de estudiar y entender el proceso de evolución tecnológica: el rápido ritmo del progreso tecnológico en el campo de la inteligencia artificial (IA) ha hecho que sea obligatorio que las personas comprendan el proceso de evolución tecnológica. A medida que avanzamos hacia un mundo más automatizado e interconectado, es fundamental evaluar la importancia del aprendizaje profundo en la PNL. La capacidad de desarrollar aplicaciones prácticas que satisfagan las necesidades de la sociedad depende de nuestra capacidad para entender los principios fundamentales de esta tecnología.
''
Deep arning for Natural Language Processing A Gentle Introduction Author: Mihai Surdeanu February 8、2024ジャンル:技術、人工知能、機械学習、自然言語処理概要:今日の技術ベースの世界では、自然言語処理を含む様々なドメインのための重要なツールとなっていますP)。しかしながら、言語構造を正確に表現する計算モデルを構築することの複雑さは、特に数学や計算機科学において強いバックグラウンドを持っていない人々にとっては困難である可能性がある。本書では、NLPのためのディープラーニングを総合的に紹介し、人文社会科学の人々がアクセスできるようにしています。人工知能(AI)の分野における技術の急速な進歩は、人々が技術進化のプロセスを理解することを不可欠にしています。より自動化されたコネクテッドな世界に向かっていく中で、NLPにおけるディープラーニングの価値を理解することが重要です。社会のニーズを満たす実用的なアプリケーションを開発する能力は、この技術の根底にある原則を理解する能力に依存します。

You may also be interested in:

Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning
Machine Learning and Deep Learning in Natural Language Processing
Machine Learning and Deep Learning in Natural Language Processing
Deep Learning for Natural Language Processing: A Gentle Introduction
Deep Learning for Natural Language Processing A Gentle Introduction
Deep Learning for Natural Language Processing A Gentle Introduction
Deep Learning for Natural Language Processing (MEAP Edition) +code
Real-World Natural Language Processing Practical applications with deep learning
Hands-On Natural Language Processing with PyTorch 1.x: Build smart, AI-driven linguistic applications using deep learning and NLP techniques
Representation Learning for Natural Language Processing
Transfer Learning for Natural Language Processing
Natural Language Processing for Beginners : Advanced Techniques and Applications in Natural Language Processing
Natural Language Processing (A Machine Learning Perspective)
Natural Language Processing with Spark NLP Learning to Understand Text at Scale
Deep Learning Theory, Architectures and Applications in Speech, Image and Language Processing
Deep Learning Theory, Architectures and Applications in Speech, Image and Language Processing
Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
IBM Watson Solutions for Machine Learning: Achieving Successful Results Across Computer Vision, Natural Language Processing and AI Projects Using Watson Cognitive Tools
Natural Language Processing in the Real World: Text Processing, Analytics, and Classification (Chapman and Hall CRC Data Science Series)
Natural Language Processing with Transformers Building Language Applications with Hugging Face
Natural Language Processing for Beginners Demystifying Language in the Digital Age
Natural Language Processing for Beginners Demystifying Language in the Digital Age
Deep Learning for Multimedia Processing Applications Volume Two Signal Processing and Pattern Recognition
Deep Learning for Multimedia Processing Applications Volume Two Signal Processing and Pattern Recognition
Natural Language Processing with Python Updated Edition From Basics to Advanced Projects Mastering Text Analysis, Machine Learning Models, and Chatbot Development (Mastering the AI Revolution)
Language Intelligence Expanding Frontiers in Natural Language Processing
A Course in Natural Language Processing
A Course in Natural Language Processing
A Course in Natural Language Processing
Natural Language Processing
Explainable Natural Language Processing
Python for Natural Language Processing, 3E
Introduction to Natural Language Processing
Deep Learning for Multimedia Processing Applications Volume 1 Image Security and Intelligent Systems for Multimedia Processing
Deep Learning for Multimedia Processing Applications Volume 1 Image Security and Intelligent Systems for Multimedia Processing
Foundations of Statistical Natural Language Processing
Natural Language Processing for Software Engineering