BOOKS - Starting Data Analytics with Generative AI and Python
Starting Data Analytics with Generative AI and Python - Artur Guja, Marlena Siwiak, Marian Siwiak 2025 PDF Manning Publications BOOKS
ECO~15 kg CO²

1 TON

Views
16718

Telegram
 
Starting Data Analytics with Generative AI and Python
Author: Artur Guja, Marlena Siwiak, Marian Siwiak
Year: 2025
Pages: 362
Format: PDF
File size: 15.5 MB
Language: ENG



Pay with Telegram STARS
Book Description: Starting Data Analytics with Generative AI and Python is a comprehensive guide that covers the fundamentals of data analytics using generative AI and Python programming language. The book provides readers with a solid understanding of the concepts and techniques of data analysis and their practical applications in various industries. It begins by introducing the basics of data analytics and gradually moves towards more advanced topics such as machine learning, deep learning, and neural networks. The book also explores the use of generative AI in data analytics and its potential applications in fields like image and video processing, natural language processing, and predictive modeling. The book is divided into four parts: Part 1 - Introduction to Data Analytics, Part 2 - Generative AI and Python Programming, Part 3 - Advanced Topics in Data Analytics, and Part 4 - Case Studies and Applications. Each part builds upon the previous one, providing a thorough understanding of the subject matter. The book concludes with a discussion on the future of data analytics and its potential impact on society. Throughout the book, the author uses real-world examples and case studies to illustrate the concepts and techniques discussed. The book also includes exercises and projects to help readers practice and apply their knowledge. The author's writing style is clear and concise, making it accessible to both beginners and experienced professionals in the field.
Starting Data Analytics with Generative AI and Python - всеобъемлющее руководство, охватывающее основы аналитики данных с использованием генеративного AI и языка программирования Python. Книга дает читателям твердое понимание концепций и методов анализа данных и их практического применения в различных отраслях. Он начинается с введения основ аналитики данных и постепенно движется к более продвинутым темам, таким как машинное обучение, глубокое обучение и нейронные сети. В книге также рассматривается использование генеративного ИИ в аналитике данных и его потенциальное применение в таких областях, как обработка изображений и видео, обработка естественного языка и прогнозное моделирование. Книга разделена на четыре части: Часть 1 - Введение в аналитику данных, Часть 2 - Генеративный ИИ и программирование на Python, Часть 3 - Расширенные темы в аналитике данных и Часть 4 - Тематические исследования и приложения. Каждая часть основывается на предыдущей, обеспечивая полное понимание предмета. Завершает книгу дискуссия о будущем аналитики данных и ее потенциальном влиянии на общество. На протяжении всей книги автор использует реальные примеры и тематические исследования для иллюстрации обсуждаемых концепций и методов. В книгу также вошли упражнения и проекты, которые помогут читателям потренироваться и применить свои знания. Авторский стиль письма ясен и лаконичен, что делает его доступным как для начинающих, так и для опытных специалистов в данной области.
Starting Data Analytics with Generative AI and Python è una guida completa che comprende le basi degli analisti dei dati utilizzando l'AI generativo e il linguaggio di programmazione Python. Il libro fornisce ai lettori una chiara comprensione dei concetti e dei metodi di analisi dei dati e delle loro applicazioni pratiche in diversi settori. Inizia con l'introduzione di basi di analisi dei dati e si muove gradualmente verso temi più avanzati come l'apprendimento automatico, l'apprendimento approfondito e le reti neurali. Il libro descrive anche l'uso dell'IA generale nell'analisi dei dati e la sua potenziale applicazione in settori quali l'elaborazione di immagini e video, l'elaborazione del linguaggio naturale e la simulazione predittiva. Il libro è suddiviso in quattro parti: Parte 1 - Introduzione all'analisi dei dati, Parte 2 - Generale IA e programmazione su Python, Parte 3 - Argomenti avanzati nell'analisi dei dati e Parte 4 - Studi di caso e applicazioni. Ogni parte si basa sulla parte precedente, garantendo una piena comprensione dell'oggetto. Completa la discussione sul futuro degli analisti dei dati e sul suo potenziale impatto sulla società. Durante tutto il libro, l'autore utilizza esempi reali e studi di caso per illustrare i concetti e i metodi discussi. Il libro include anche esercizi e progetti che aiuteranno i lettori ad esercitarsi e ad applicare le loro conoscenze. Lo stile di scrittura degli autori è chiaro e conciso, rendendolo accessibile sia ai principianti che ai professionisti esperti in questo campo.
''

You may also be interested in:

Starting Data Analytics with Generative AI and Python
Starting Data Analytics with Generative AI and Python
Learn Data Analytics For Beginners Data Analyst, Deep Learning, Neural Network, Python Data Analytics
Data Analytics and Python Programming 2 Bundle Manuscript Beginners Guide to Learn Data Analytics, Predictive Analytics and Data Science with Python Programming
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Practical Data Science with Hadoop and Spark: Designing and Building Effective Analytics at Scale (Addison-Wesley Data and Analytics)
Video Data Analytics for Smart City Applications: Methods and Trends (IoT and Big Data Analytics)
Data Analytics Principles, Tools, and Practices A Complete Guide for Advanced Data Analytics Using the Latest Trends, Tools
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Modern Data Analytics in Excel Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Modern Data Analytics in Excel Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Modern Data Analytics in Excel: Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS
Big Data and Analytics The key concepts and practical applications of Big Data analytics
Big Data and Analytics The key concepts and practical applications of Big Data analytics
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Hands-On Data Preprocessing in Python: Learn how to effectively prepare data for successful data analytics
Essential Data Analytics, Data Science, and AI A Practical Guide for a Data-Driven World
It|s All Analytics, Part III: The Applications of AI, Analytics, and Data Science (It|s All Analytics, 3)
Python for Data Analytics A Beginners Guide for Learning Python Data Analytics from A-Z
Augmented Analytics: Enabling Analytics Transformation for Data-Informed Decisions
Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python (FT Press Analytics)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (Final Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (Final Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Analytics Series) 1st Edition - Fiunal
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
Applications of Emerging Technologies and AI ML Algorithms: International Conference on Data Analytics in Public Procurement and Supply Chain (ICDAPS2022) (Asset Analytics)
Big Data Governance Modern Data Management Principles for Hadoop, NoSQL & Big Data Analytics
Business Intelligence An Essential Beginner’s Guide to BI, Big Data, Artificial Intelligence, Cybersecurity, Machine Learning, Data Science, Data Analytics, Social Media and Internet Marketing
Data Analytics and Machine Learning: Navigating the Big Data Landscape (Studies in Big Data, 145)
Data Labeling in Machine Learning with Python: Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models
Data Analytics and AI (Data Analytics Applications)