BOOKS - Starting Data Analytics with Generative AI and Python
Starting Data Analytics with Generative AI and Python - Artur Guja, Marlena Siwiak, Marian Siwiak 2025 PDF Manning Publications BOOKS
ECO~15 kg CO²

1 TON

Views
35527

Telegram
 
Starting Data Analytics with Generative AI and Python
Author: Artur Guja, Marlena Siwiak, Marian Siwiak
Year: 2025
Pages: 362
Format: PDF
File size: 15.5 MB
Language: ENG



Pay with Telegram STARS
Book Description: Starting Data Analytics with Generative AI and Python is a comprehensive guide to understanding the power of generative AI and its applications in data analytics. The book covers the basics of generative AI, its history, and its role in shaping the future of data analysis. It provides practical examples of how to use Python programming language to implement generative AI models in real-world scenarios. The book also explores the ethical implications of using generative AI in data analytics and its potential impact on society. The book is divided into four parts: Part 1: Introduction to Generative AI, Part 2: Applications of Generative AI in Data Analytics, Part 3: Case Studies, and Part 4: Ethical Considerations. Each part builds upon the previous one, providing a thorough understanding of the subject matter.
Starting Data Analytics with Generative AI and Python - всеобъемлющее руководство по пониманию силы генеративного ИИ и его приложений в аналитике данных. Книга охватывает основы генеративного ИИ, его историю и его роль в формировании будущего анализа данных. В ней приводятся практические примеры того, как использовать язык программирования Python для реализации генеративных моделей ИИ в реальных сценариях. В книге также рассматриваются этические последствия использования генеративного ИИ в аналитике данных и его потенциальное влияние на общество. Книга разделена на четыре части: Часть 1: Введение в генеративный ИИ, Часть 2: Применение генеративного ИИ в аналитике данных, Часть 3: Тематические исследования и Часть 4: Этические соображения. Каждая часть основывается на предыдущей, обеспечивая полное понимание предмета.
Starting Data Analytics with Generative AI and Python est un guide complet pour comprendre la force de l'IA générative et ses applications dans l'analyse de données. livre couvre les fondements de l'IA générative, son histoire et son rôle dans l'analyse future des données. Il donne des exemples pratiques de la façon d'utiliser le langage de programmation Python pour mettre en œuvre des modèles génériques d'IA dans des scénarios réels. livre examine également les conséquences éthiques de l'utilisation de l'IA générative dans l'analyse des données et son impact potentiel sur la société. livre est divisé en quatre parties : Partie 1 : Introduction à l'IA générative, Partie 2 : Application de l'IA générative à l'analyse des données, Partie 3 : Études de cas et Partie 4 : Considérations éthiques. Chaque partie est basée sur la précédente, assurant une compréhension complète du sujet.
Starting Data Analytics with Generative AI and Python es una guía completa para entender el poder de la IA generativa y sus aplicaciones en análisis de datos. libro abarca los fundamentos de la IA generativa, su historia y su papel en la formación del futuro análisis de datos. Proporciona ejemplos prácticos de cómo utilizar el lenguaje de programación Python para implementar modelos generativos de IA en escenarios reales. libro también examina las implicaciones éticas del uso de IA generativa en la analítica de datos y su potencial impacto en la sociedad. libro se divide en cuatro partes: Parte 1: Introducción a la IA generativa, Parte 2: Aplicación de la IA generativa en la analítica de datos, Parte 3: Estudios de casos y Parte 4: Consideraciones éticas. Cada parte se basa en la anterior, proporcionando una comprensión completa del tema.
Starting Data Analytics with Generative AI and Python è una guida completa per comprendere il potere dell'IA generativa e delle sue applicazioni nell'analisi dei dati. Il libro comprende le basi dell'intelligenza artificiale genetica, la sua storia e il suo ruolo nella formazione dell'analisi futura dei dati. Fornisce esempi pratici di come utilizzare il linguaggio di programmazione Python per implementare modelli generali di IA in scenari reali. Il libro descrive anche gli effetti etici dell'uso dell'IA generativa nell'analisi dei dati e il suo potenziale impatto sulla società. Il libro è suddiviso in quattro parti: Parte 1: Introduzione all'IA generativa, Parte 2: Applicazione dell'IA generativa nell'analisi dei dati, Parte 3: Studi di caso e Parte 4: Considerazioni etiche. Ogni parte si basa sulla parte precedente, garantendo una piena comprensione dell'oggetto.
Starting Data Analytics mit generativer KI und Python ist ein umfassender itfaden zum Verständnis der Macht generativer KI und ihrer Anwendungen in der Datenanalyse. Das Buch behandelt die Grundlagen der generativen KI, ihre Geschichte und ihre Rolle bei der Gestaltung der zukünftigen Datenanalyse. Es bietet praktische Beispiele dafür, wie die Programmiersprache Python verwendet werden kann, um generative KI-Modelle in realen Szenarien zu implementieren. Das Buch befasst sich auch mit den ethischen Implikationen des Einsatzes generativer KI in der Datenanalyse und ihren möglichen Auswirkungen auf die Gesellschaft. Das Buch ist in vier Teile gegliedert: Teil 1: Einführung in generative KI, Teil 2: Anwendung generativer KI in der Datenanalyse, Teil 3: Fallstudien und Teil 4: Ethische Überlegungen. Jeder Teil baut auf dem vorherigen auf und bietet ein umfassendes Verständnis des Themas.
''
Generative AI ve Python ile Veri Analitiğine Başlamak, üretken AI'nın ve veri analitiğindeki uygulamalarının gücünü anlamak için kapsamlı bir kılavuzdur. Kitap, üretken AI'nın temellerini, tarihini ve gelecekteki veri analizini şekillendirmedeki rolünü kapsar. Gerçek dünya senaryolarında üretken AI modellerini uygulamak için Python programlama dilinin nasıl kullanılacağına dair pratik örnekler sunar. Kitap ayrıca, veri analizinde üretken AI kullanmanın etik etkilerine ve toplum üzerindeki potansiyel etkisine de bakıyor. Kitap dört bölüme ayrılmıştır: Bölüm 1: Üretken AI'ya Giriş, Bölüm 2: Veri Analitiğinde Üretken AI'nın Uygulanması, Bölüm 3: Vaka Çalışmaları ve Bölüm 4: Etik Hususlar. Her bölüm bir öncekinin üzerine inşa edilir ve konunun tam olarak anlaşılmasını sağlar.
بدء تحليلات البيانات مع الذكاء الاصطناعي المولد و Python هو دليل شامل لفهم قوة الذكاء الاصطناعي المولد وتطبيقاته في تحليلات البيانات. يغطي الكتاب أساسيات الذكاء الاصطناعي التوليدي وتاريخه ودوره في تشكيل تحليل البيانات المستقبلية. يقدم أمثلة عملية لكيفية استخدام لغة برمجة بايثون لتنفيذ نماذج الذكاء الاصطناعي المولدة في سيناريوهات العالم الحقيقي. يبحث الكتاب أيضًا في الآثار الأخلاقية لاستخدام الذكاء الاصطناعي المولد في تحليلات البيانات وتأثيره المحتمل على المجتمع. ينقسم الكتاب إلى أربعة أجزاء: الجزء 1: مقدمة للذكاء الاصطناعي التوليدي، الجزء 2: تطبيق الذكاء الاصطناعي التوليدي في تحليلات البيانات، الجزء 3: دراسات الحالة، والجزء 4: الاعتبارات الأخلاقية. يعتمد كل جزء على الجزء السابق، مما يوفر فهمًا كاملاً للموضوع.
使用Generative AI和Python啟動數據分析是了解生成AI的力量及其在數據分析中的應用的綜合指南。該書涵蓋了生成AI的基礎,其歷史以及其在塑造未來數據分析中的作用。它提供了如何使用Python編程語言在現實世界中實現AI生成模型的實際示例。該書還探討了在數據分析中使用生成AI的倫理影響及其對社會的潛在影響。該書分為四個部分:第1部分:生成AI的介紹,第2部分:生成AI在數據分析中的應用,第3部分:案例研究和第4部分:道德考慮。每個部分都基於先前的部分,從而可以完全理解主題。

You may also be interested in:

Starting Data Analytics with Generative AI and Python
Starting Data Analytics with Generative AI and Python
Learn Data Analytics For Beginners Data Analyst, Deep Learning, Neural Network, Python Data Analytics
Data Analytics and Python Programming 2 Bundle Manuscript Beginners Guide to Learn Data Analytics, Predictive Analytics and Data Science with Python Programming
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Practical Data Science with Hadoop and Spark: Designing and Building Effective Analytics at Scale (Addison-Wesley Data and Analytics)
Video Data Analytics for Smart City Applications: Methods and Trends (IoT and Big Data Analytics)
Data Analytics Principles, Tools, and Practices A Complete Guide for Advanced Data Analytics Using the Latest Trends, Tools
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Modern Data Analytics in Excel Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Modern Data Analytics in Excel Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Modern Data Analytics in Excel: Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS
Big Data and Analytics The key concepts and practical applications of Big Data analytics
Big Data and Analytics The key concepts and practical applications of Big Data analytics
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Hands-On Data Preprocessing in Python: Learn how to effectively prepare data for successful data analytics
Essential Data Analytics, Data Science, and AI A Practical Guide for a Data-Driven World
It|s All Analytics, Part III: The Applications of AI, Analytics, and Data Science (It|s All Analytics, 3)
Python for Data Analytics A Beginners Guide for Learning Python Data Analytics from A-Z
Augmented Analytics: Enabling Analytics Transformation for Data-Informed Decisions
Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python (FT Press Analytics)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (Final Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (Final Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Analytics Series) 1st Edition - Fiunal
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
Applications of Emerging Technologies and AI ML Algorithms: International Conference on Data Analytics in Public Procurement and Supply Chain (ICDAPS2022) (Asset Analytics)
Big Data Governance Modern Data Management Principles for Hadoop, NoSQL & Big Data Analytics
Business Intelligence An Essential Beginner’s Guide to BI, Big Data, Artificial Intelligence, Cybersecurity, Machine Learning, Data Science, Data Analytics, Social Media and Internet Marketing
Data Analytics and Machine Learning: Navigating the Big Data Landscape (Studies in Big Data, 145)
Data Labeling in Machine Learning with Python: Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models
Data Analytics and AI (Data Analytics Applications)