BOOKS - Better Data Visualizations: A Guide for Scholars, Researchers, and Wonks
Better Data Visualizations: A Guide for Scholars, Researchers, and Wonks - Jonathan Schwabish February 9, 2021 PDF  BOOKS
ECO~27 kg CO²

3 TON

Views
54088

Telegram
 
Better Data Visualizations: A Guide for Scholars, Researchers, and Wonks
Author: Jonathan Schwabish
Year: February 9, 2021
Format: PDF
File size: PDF 76 MB
Language: English



Pay with Telegram STARS
Long Detailed Description of the Plot: In "Better Data Visualizations: A Guide for Scholars, Researchers, and Wonks author Jonathan Schwabish presents a comprehensive guide to creating more effective data visualizations for researchers, scholars, and anyone looking to communicate complex information in a clear and concise manner. With over five hundred examples and a focus on the principles of visual perception, this book is an essential resource for anyone looking to improve their data visualization skills. The book begins by emphasizing the importance of understanding the process of technology evolution and the need to develop a personal paradigm for perceiving the technological process of developing modern knowledge. This is crucial for survival in today's fast-paced, data-driven world, where information is constantly being generated and disseminated at an unprecedented rate. The author argues that by studying and mastering the process of technological advancement, individuals can better navigate the ever-changing landscape of modern knowledge and make informed decisions about how to use data to inform their work and lives.
Long Detailed Description of the Plot: In «Better Data Visualizations: A Guide for Scholars, Researchers, and Wonks» автор Джонатан Швабиш (Jonathan Schwabish) представляет всеобъемлющее руководство по созданию более эффективных визуализаций данных для исследователей, ученых и всех, кто хочет передать сложную информацию в ясной и сжатой форме. Эта книга с более чем пятьюстами примерами и акцентом на принципах визуального восприятия является важным ресурсом для всех, кто хочет улучшить свои навыки визуализации данных. Книга начинается с подчёркивания важности понимания процесса эволюции технологий и необходимости выработки личностной парадигмы восприятия технологического процесса развития современных знаний. Это имеет решающее значение для выживания в современном быстро развивающемся мире, управляемом данными, где информация постоянно генерируется и распространяется с беспрецедентной скоростью. Автор утверждает, что, изучая и осваивая процесс технологического прогресса, индивиды могут лучше ориентироваться в постоянно меняющемся ландшафте современных знаний и принимать обоснованные решения о том, как использовать данные для информирования своей работы и жизни.
Long Detailed Description of the Plot : In « Better Data Visualizations : A Guide for Scholars, Researchers, and Wonks » L'auteur Jonathan Schwabish présente un guide complet pour créer des visualisations de données plus efficaces pour les chercheurs, les scientifiques et tous ceux qui veulent transmettre des informations complexes sous une forme claire et concise. Ce livre, avec plus de cinq exemples et un accent sur les principes de la perception visuelle, est une ressource importante pour tous ceux qui veulent améliorer leurs compétences en visualisation de données. livre commence par souligner l'importance de comprendre l'évolution des technologies et la nécessité d'élaborer un paradigme personnel de la perception du processus technologique du développement des connaissances modernes. Cela est crucial pour la survie dans un monde de données en évolution rapide, où l'information est constamment générée et diffusée à une vitesse sans précédent. L'auteur affirme qu'en étudiant et en maîtrisant le processus de progrès technologique, les individus peuvent mieux s'orienter dans le paysage en constante évolution des connaissances modernes et prendre des décisions éclairées sur la façon d'utiliser les données pour orienter leur travail et leur vie.
Larga descripción detallada de la placa: En «Better Data Visualizations: A Guide for Scholars, Researchers, and Wonks», del autor Jonathan Schwabish (Jonathan Swabish) chwabish) presenta una guía integral para crear imágenes de datos más eficientes para investigadores, científicos y cualquier persona que desee transmitir información compleja de manera clara y concisa. Este libro, con más de quinientos ejemplos y un enfoque en los principios de la percepción visual, es un recurso importante para cualquiera que quiera mejorar sus habilidades de visualización de datos. libro comienza enfatizando la importancia de entender el proceso de evolución de la tecnología y la necesidad de generar un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno. Esto es crucial para la supervivencia en un mundo en rápida evolución, controlado por datos, donde la información se genera y difunde constantemente a una velocidad sin precedentes. autor sostiene que al estudiar y dominar el proceso de progreso tecnológico, los individuos pueden orientarse mejor en el panorama en constante cambio del conocimiento moderno y tomar decisiones informadas sobre cómo utilizar los datos para informar su trabajo y su vida.
Long Detailed Descrição of the Plot: In «Better Data Visualizações: A Guia para Scholars, Researchers, and Wonks», por Jonathan Schwabish, apresenta uma guia abrangente sobre a criação de visualizações mais eficazes para os pesquisadores Cientistas e todos os que querem passar informações complexas de forma clara e comprimida. Este livro, com mais de cinco exemplos e ênfase na percepção visual, é um recurso importante para todos os que querem melhorar suas habilidades de visualização de dados. O livro começa enfatizando a importância de compreender a evolução da tecnologia e a necessidade de criar um paradigma pessoal de percepção do processo de desenvolvimento do conhecimento moderno. Isso é crucial para a sobrevivência em um mundo em desenvolvimento moderno, gerido por dados, onde a informação é constantemente gerada e divulgada a uma velocidade sem precedentes. O autor afirma que, ao estudar e aprender o processo de progresso tecnológico, os indivíduos podem se orientar melhor na paisagem em constante evolução do conhecimento moderno e tomar decisões razoáveis sobre como usar os dados para informar seu trabalho e vida.
Long Detailed Descrizione of the Plot: In «Better Data Visionalization: A Guide per Scholars, Sardarchers, and Wonks», l'autore Jonathan Schwabish presenta una guida completa per la creazione di immagini più efficaci dei dati per i ricercatori , scienziati e tutti coloro che vogliono trasmettere informazioni complesse in modo chiaro e compresso. Questo libro, con più di cinque esempi e un focus sui principi della percezione visiva, è una risorsa importante per tutti coloro che desiderano migliorare la loro capacità di visualizzazione dei dati. Il libro inizia sottolineando l'importanza di comprendere l'evoluzione della tecnologia e la necessità di sviluppare un paradigma personale della percezione del processo tecnologico di sviluppo della conoscenza moderna. Ciò è fondamentale per la sopravvivenza in un mondo in continua evoluzione, gestito da dati in cui le informazioni vengono generate e diffuse a velocità senza precedenti. L'autore sostiene che, studiando e imparando il processo di progresso tecnologico, gli individui possono orientarsi meglio in un panorama in continua evoluzione della conoscenza moderna e prendere decisioni ragionevoli su come utilizzare i dati per informare il proprio lavoro e la loro vita.
Long Detailed Beschreibung des Plot: In „Better Data Visualizations: A Guide for Scholars, Researchers, and Wonks“ präsentiert Autor Jonathan Schwabish einen umfassenden itfaden zur Erstellung effizienterer Datenvisualisierungen für Forscher, Wissenschaftler und alle, die komplexe Informationen in klarer und prägnanter Form vermitteln wollen. Dieses Buch mit über fünfhundert Beispielen und einem Schwerpunkt auf den Prinzipien der visuellen Wahrnehmung ist eine wichtige Ressource für alle, die ihre Datenvisualisierungsfähigkeiten verbessern möchten. Das Buch beginnt mit der Betonung der Bedeutung des Verständnisses des Prozesses der Technologieentwicklung und der Notwendigkeit, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens zu entwickeln. Dies ist entscheidend für das Überleben in der heutigen datengetriebenen schnelllebigen Welt, in der Informationen kontinuierlich generiert und mit beispielloser Geschwindigkeit verbreitet werden. Der Autor argumentiert, dass Individuen durch das Studium und die Beherrschung des Prozesses des technologischen Fortschritts besser durch die sich ständig verändernde Landschaft des modernen Wissens navigieren und fundierte Entscheidungen darüber treffen können, wie sie Daten nutzen können, um ihre Arbeit und ihr ben zu informieren.
Długi szczegółowy opis fabuły: W „psze wizualizacje danych: Przewodnik dla uczonych, naukowców i Wonks” Jonathana Schwabisha zapewnia kompleksowy przewodnik po tworzeniu bardziej efektywnych wizualizacji danych dla naukowców, naukowców i każdego, kto chce przekazać złożone informacje w jasny i zwięzły sposób. Z ponad pięćset przykładów i nacisk na zasady percepcji wizualnej, ta książka jest ważnym zasobem dla każdego, kto chce poprawić swoje umiejętności wizualizacji danych. Książka zaczyna się od podkreślenia znaczenia zrozumienia procesu ewolucji technologicznej oraz konieczności opracowania osobistego paradygmatu postrzegania technologicznego procesu rozwoju nowoczesnej wiedzy. Ma to kluczowe znaczenie dla przetrwania w dzisiejszym szybko rozwijającym się świecie opartym na danych, gdzie informacje są stale generowane i rozpowszechniane w niespotykanych dotąd tempach. Autor przekonuje, że badając i opanowując proces postępu technologicznego, osoby mogą lepiej nawigować po stale zmieniającym się krajobrazie nowoczesnej wiedzy i podejmować świadome decyzje dotyczące sposobu wykorzystywania danych do informowania o swojej pracy i życiu.
''
Arsanın Uzun Detaylı Açıklaması: Jonathan Schwabish'in "Daha İyi Veri Görselleştirmeleri: Akademisyenler, Araştırmacılar ve Wonks İçin Bir Kılavuz'da, araştırmacılar, bilim adamları ve karmaşık bilgileri açık ve özlü bir şekilde iletmek isteyen herkes için daha verimli veri görselleştirmeleri oluşturmak için kapsamlı bir rehber sunmaktadır. Beş yüzden fazla örnek ve görsel algı ilkelerine vurgu yapan bu kitap, veri görselleştirme becerilerini geliştirmek isteyen herkes için önemli bir kaynaktır. Kitap, teknoloji evrimi sürecini anlamanın önemini ve modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigma geliştirme ihtiyacını vurgulayarak başlar. Bu, bilginin sürekli olarak üretildiği ve benzeri görülmemiş oranlarda yayıldığı günümüzün hızlı tempolu, veri odaklı dünyasında hayatta kalmak için kritik öneme sahiptir. Yazar, teknolojik ilerleme sürecini inceleyerek ve ustalaşarak, bireylerin sürekli değişen modern bilgi manzarasında daha iyi gezinebileceğini ve çalışmalarını ve yaşamlarını bilgilendirmek için verilerin nasıl kullanılacağı konusunda bilinçli kararlar alabileceğini savunuyor.
وصف مفصل طويل للحبكة: في «تصورات أفضل للبيانات: دليل للعلماء والباحثين والونكس» بقلم جوناثان شوابيش يقدم دليلاً شاملاً لإنشاء تصورات أكثر كفاءة للباحثين والعلماء وأي شخص يريد نقل معلومات معقدة بطريقة واضحة وموجزة مع أكثر من خمسمائة مثال والتركيز على مبادئ الإدراك البصري، يعد هذا الكتاب مصدرًا مهمًا لأي شخص يتطلع إلى تحسين مهاراته في تصور البيانات. يبدأ الكتاب بالتأكيد على أهمية فهم عملية تطور التكنولوجيا والحاجة إلى تطوير نموذج شخصي لتصور العملية التكنولوجية لتطوير المعرفة الحديثة. هذا أمر بالغ الأهمية للبقاء في عالم اليوم سريع الخطى والقائم على البيانات، حيث يتم إنتاج المعلومات ونشرها باستمرار بمعدلات غير مسبوقة. يجادل المؤلف بأنه من خلال دراسة وإتقان عملية التقدم التكنولوجي، يمكن للأفراد التنقل بشكل أفضل في المشهد المتغير باستمرار للمعرفة الحديثة واتخاذ قرارات مستنيرة حول كيفية استخدام البيانات لإثراء عملهم وحياتهم.
Plot的長期詳細描述:在「更好的數據可視化:學者,表演者和歡迎指南」作者Jonathan Schwabish提供了創建更有效可視化的全面指南為研究人員、科學家和希望以清晰和簡潔的形式傳達復雜信息的任何人提供的數據。這本書不僅包含五個示例,還著重於視覺感知原理,是任何希望提高數據可視化技能的人的重要資源。本書首先強調了了解技術進化過程的重要性,以及需要制定個人範式來理解現代知識發展的過程過程。這對於當今快速發展的數據驅動世界中的生存至關重要,在該世界中,信息以前所未有的速度不斷生成和傳播。作者認為,通過研究和掌握技術進步的過程,個人可以更好地駕馭現代知識不斷變化的格局,並就如何使用數據為自己的工作和生活提供信息做出明智的決定。

You may also be interested in:

Data Labeling in Machine Learning with Python: Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models
Data Protection and Data Transfers Law
Be Data Analytical: How to Use Analytics to Turn Data into Value
Effective Data Visualization The Right Chart for the Right Data
Data Fabric as Modern Data Architecture
Smart Data Analytics: Mit Hilfe von Big Data Zusammenhange erkennen und Potentiale nutzen (De Gruyter Praxishandbuch) (German Edition)
Python for Data Analysis From the Beginner to Expert Crash Course 3.0 that will Change your Life as a Digital Programmer Thanks to the Minimalism of this Manual. Deep Machine Learning and Big Data
Python programming for beginners 3 books in 1 Beginner|s guide, Data science and Machine learning. Switch from noobgramming to PROgramming in 27 days and bring out your code poet attitude
PYTHON FOR BEGINNERS: A Complete Guide To Learn Programming, Data Science, Machine Learning And Coding Language Which Explain Step By Step Useful Tips And Tricks And Hands-On Exercises
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Microsoft Excel Made Easy A Beginner-to-Expert Guide to Mastering Spreadsheets Learn Formulas, Functions, Data Analysis, Automation, and Advanced Excel Techniques for Work and Business
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Python for Data Science A Practical Guide to Master Python Programming and System Administration. Discover The Essentials of Machine Learning and Artificial Intelligent Using Python Code
Python crash course A complete step by step beginner guide for python coding, NumPy, Pandas and Data Visualization
Python Programming A complete beginners guide on python machine learning, data science and tools (Computer Programming Book 1)
PYTHON PROGRAMMING 2 book in 1 A complete guide from beginner to intermediate on python machine learning, data science, tools (Computer Programming 5)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Statistics 101 From Data Analysis and Predictive Modeling to Measuring Distribution and Determining Probability, Your Essential Guide to Statistics (Adams 101)
Learning Language Of SQL A Beginners Guide Step By Step Training Performance Integration Services For Mere Mortals To Understand Database Design And Data Analytics And Computer Programming Server
Ultimate Parallel and Distributed Computing with Julia For Data Science: Excel in Data Analysis, Statistical Modeling and Machine Learning by … to optimize workflows (English Edition)
Python for Absolute Beginners: The Ultimate Beginner|s Guide to Learn Python Programming with Extensive Coverage on Data Science and Web Programming
Machine Learning in Python for Dynamic Process Systems A practitioner’s guide for building process modeling, predictive, and monitoring solutions using dynamic data
Python for Absolute Beginners The Ultimate Beginner|s Guide to Learn Python Programming with Extensive Coverage on Data Science and Web Programming
Machine Learning in Python for Dynamic Process Systems A practitioner’s guide for building process modeling, predictive, and monitoring solutions using dynamic data
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Data-Driven Modelling with Fuzzy Sets: Embracing Uncertainty (Intelligent Data-Driven Systems and Artificial Intelligence)
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Big Data Systems A 360-degree Approach (Chapman & Hall/CRC Big Data Series)
Data Engineering with Scala and Spark: Build streaming and batch pipelines that process massive amounts of data using Scala
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud, Global Edition
Geospatial Data Science: A Hands-On Approach for Building Geospatial Applications Using Linked Data Technologies (ACM Books)
Azure Data and AI Architect Handbook: Adopt a structured approach to designing data and AI solutions at scale on Microsoft Azure
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
Intelligent Data Analysis for Biomedical Applications Challenges and Solutions (Intelligent Data-Centric Systems Sensor Collected Intelligence)
Data Engineering with AWS - Second Edition: Acquire the skills to design and build AWS-based data transformation pipelines like a pro
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
Practical Data Science with Hadoop and Spark: Designing and Building Effective Analytics at Scale (Addison-Wesley Data and Analytics)
Big Data and Social Science Data Science Methods and Tools for Research and Practice, 2nd Edition