BOOKS - Evolutionary Deep Learning: Genetic algorithms and neural networks
Evolutionary Deep Learning: Genetic algorithms and neural networks - Micheal Lanham August 8, 2023 PDF  BOOKS
ECO~17 kg CO²

2 TON

Views
797210

Telegram
 
Evolutionary Deep Learning: Genetic algorithms and neural networks
Author: Micheal Lanham
Year: August 8, 2023
Format: PDF
File size: PDF 13 MB
Language: English



Book Description: 'Evolutionary Deep Learning, Genetic Algorithms, and Neural Networks' is a book that explores the intersection of deep learning and evolutionary computation, providing readers with a comprehensive understanding of how these two fields can be combined to create more powerful and adaptable AI systems. The book is divided into four parts, each focusing on a different aspect of evolutionary deep learning: getting started, optimizing deep learning, advanced applications, and reinforcement learning. Part one provides an introduction to evolutionary deep learning, covering topics such as the principles of evolutionary computation, genetic algorithms, and the DEEP (Differential Evolution, Evolutionary Programming, and Particle Swarm Optimization) framework. This section also includes practical examples of how to use evolutionary computation to optimize deep learning models.
'Evolutionary Deep arning, Genetic Algorithms, and Neural Networks'- книга, которая исследует пересечение глубокого обучения и эволюционных вычислений, предоставляя читателям исчерпывающее понимание того, как эти два поля могут быть объединены для создания более мощных и адаптируемых систем ИИ. Книга состоит из четырех частей, каждая из которых посвящена различным аспектам эволюционного глубокого обучения: началу работы, оптимизации глубокого обучения, расширенным приложениям и обучению с подкреплением. В первой части представлено введение в эволюционное глубокое обучение, охватывающее такие темы, как принципы эволюционных вычислений, генетические алгоритмы и фреймворк DEEP (Differential Evolution, Evolutionary Programming, and Particle Swarm Optimization). Этот раздел также включает практические примеры того, как использовать эволюционные вычисления для оптимизации моделей глубокого обучения.
« Evolutionary Deep arning, Genetic Algorithms, and Neural Networks » est un livre qui explore l'intersection entre l'apprentissage profond et le calcul évolutionnaire, offrant aux lecteurs une compréhension exhaustive de la façon dont ces deux champs peuvent être combinés pour créer des systèmes d'IA plus puissants et adaptables. livre se compose de quatre parties, chacune traitant de différents aspects de l'apprentissage profond évolutionnaire : démarrage, optimisation de l'apprentissage profond, applications avancées et apprentissage renforcé. La première partie présente une introduction à l'apprentissage profond évolutionnaire, couvrant des sujets tels que les principes de calcul évolutionnaire, les algorithmes génétiques et le cadre DEEP (Differential Evolution, Evolutionary Programming, and Particle Swarm Optimization). Cette section contient également des exemples pratiques de la façon d'utiliser le calcul évolutif pour optimiser les modèles d'apprentissage profond.
'Evolutionary Deep arning, Genetic Algorithms, and Neural Networks'es un libro que explora la intersección entre el aprendizaje profundo y la computación evolutiva, proporcionando a los lectores una comprensión exhaustiva de cómo se pueden combinar estos dos campos para crear uno más potente y adaptable sistemas de IA. libro consta de cuatro partes, cada una dedicada a diferentes aspectos del aprendizaje profundo evolutivo: inicio del trabajo, optimización del aprendizaje profundo, aplicaciones avanzadas y aprendizaje con refuerzos. En la primera parte se presenta una introducción al aprendizaje profundo evolutivo que abarca temas como los principios de la computación evolutiva, los algoritmos genéticos y el framework DEEP (Evolución Diferencial, Programación Evolutiva, y Optimización de Swarm Parcial). Esta sección también incluye ejemplos prácticos de cómo utilizar la computación evolutiva para optimizar los modelos de aprendizaje profundo.
'Evolutionary Deep arning, Genetic Algorithms, and Neural Networks'é um livro que explora a interseção entre o aprendizado profundo e a computação evolutiva, oferecendo aos leitores uma compreensão abrangente de como os dois campos podem ser combinados para criar sistemas de IA mais potentes e adaptáveis. O livro é composto por quatro partes, cada uma sobre diferentes aspectos do aprendizado profundo evolucionário: o início do trabalho, a otimização do aprendizado profundo, aplicações avançadas e treinamento com reforços. A primeira parte apresenta uma introdução ao aprendizado evolucionário profundo, que abrange temas como os princípios da computação evolucionária, algoritmos genéticos e o quadro DEEP (Determinal Evolution, Evolutionary Programing, and Particle Swarm Optimization). Esta seção também inclui exemplos práticos de como usar computação evolutiva para otimizar modelos de aprendizagem profunda.
Evolutionary Deep arning, Genetic Algorithms, and Neurale Networks è un libro che esamina l'intersezione tra apprendimento profondo e elaborazione evolutiva, fornendo ai lettori una comprensione completa di come i due campi possano essere combinati per creare sistemi di IA più potenti e adattabili. Il libro è composto da quattro parti, ognuna dedicata a diversi aspetti dell'apprendimento approfondito evolutivo: avvio, ottimizzazione dell'apprendimento approfondito, applicazioni avanzate e formazione con rinforzi. La prima parte presenta un'introduzione all'apprendimento profondo evolutivo che comprende temi quali i principi del calcolo evolutivo, gli algoritmi genetici e il framework DEEP (Differential Evolution, Evolutionary Programing, and Particle Swarm Ottimization). Questa sezione include anche esempi pratici di come utilizzare i calcoli evolutivi per ottimizzare i modelli di apprendimento approfondito.
„Evolutionary Deep arning, Genetic Algorithms, and Neural Networks“ ist ein Buch, das die Schnittstelle von Deep arning und evolutionärem Computing untersucht und den sern einen umfassenden Einblick gibt, wie diese beiden Felder kombiniert werden können, um leistungsfähigere und anpassungsfähigere KI-Systeme zu schaffen. Das Buch besteht aus vier Teilen, die sich jeweils auf verschiedene Aspekte des evolutionären Deep arning konzentrieren: Einstieg, Deep arning-Optimierung, erweiterte Anwendungen und verstärktes rnen. Der erste Teil bietet eine Einführung in das evolutionäre Deep arning und deckt Themen wie evolutionäre Rechenprinzipien, genetische Algorithmen und das DEEP-Framework (Differential Evolution, Evolutionary Programming, and Particle Swarm Optimization) ab. Dieser Abschnitt enthält auch praktische Beispiele für die Verwendung von evolutionären Berechnungen zur Optimierung von Deep-arning-Modellen.
„Evolutionary Deep arning, Genetic Algorithms, and Neural Networks” to książka, która bada skrzyżowanie głębokiego uczenia się i ewolucyjnego przetwarzania danych, zapewniając czytelnikom kompleksowe zrozumienie, w jaki sposób te dwie dziedziny mogą być połączone w celu stworzenia silniejszych i adaptowalnych systemów AI. Książka składa się z czterech części, z których każda skupia się na różnych aspektach ewolucyjnego głębokiego uczenia się: rozpoczynaniu, optymalizacji głębokiego uczenia się, zaawansowanych zastosowaniach i uczeniu się wzmacniającym. Pierwsza część stanowi wprowadzenie do ewolucyjnego głębokiego uczenia się, obejmującego tematy takie jak zasady obliczeń ewolucyjnych, algorytmy genetyczne i ramy DEEP (ewolucja różnicowa, programowanie ewolucyjne i optymalizacja roju cząstek). Sekcja ta zawiera również praktyczne przykłady wykorzystania komputerów ewolucyjnych do optymalizacji modeli głębokiego uczenia się.
”למידה עמוקה אבולוציונית, אלגוריתמים גנטיים, ורשתות עצביות” הוא ספר החוקר את הצטלבות הלמידה העמוקה והמיחשוב האבולוציוני, ומספק לקוראים הבנה מקיפה כיצד ניתן לשלב את שני התחומים הללו ליצירת מערכות בינה מלאכותית חזקות ומותאמות יותר. הספר מורכב מארבעה חלקים, שכל אחד מהם מתמקד בהיבטים שונים של למידה מעמיקה אבולוציונית: התחלה, ייעול למידה עמוקה, יישומים מתקדמים ולמידת חיזוק. החלק הראשון מספק הקדמה ללמידה עמוקה אבולוציונית, המכסה נושאים כמו עקרונות המחשוב האבולוציוני, האלגוריתמים הגנטיים ומסגרת DEEP (אבולוציה דיפרנציאלית, תכנות אבולוציוני ואופטימיזציה של נחילי חלקיקים). סעיף זה כולל גם דוגמאות מעשיות כיצד להשתמש במחשוב אבולוציוני כדי לייעל מודלים של למידה עמוקה.''
'Evrimsel Derin Öğrenme, Genetik Algoritmalar ve nir Ağları', derin öğrenme ve evrimsel hesaplamanın kesişimini araştıran ve okuyuculara bu iki alanın daha güçlü ve uyarlanabilir AI sistemleri oluşturmak için nasıl birleştirilebileceğine dair kapsamlı bir anlayış sağlayan bir kitaptır. Kitap, her biri evrimsel derin öğrenmenin farklı yönlerine odaklanan dört bölümden oluşuyor: başlamak, derin öğrenmeyi optimize etmek, gelişmiş uygulamalar ve pekiştirmeli öğrenme. İlk bölüm, evrimsel bilgi işlem ilkeleri, genetik algoritmalar ve DEEP çerçevesi (Diferansiyel Evrim, Evrimsel Programlama ve Parçacık Swarm Optimizasyonu) gibi konuları kapsayan evrimsel derin öğrenmeye bir giriş sağlar. Bu bölüm aynı zamanda derin öğrenme modellerini optimize etmek için evrimsel hesaplamanın nasıl kullanılacağına dair pratik örnekler içermektedir.
«التعلم العميق التطوري والخوارزميات الجينية والشبكات العصبية» هو كتاب يستكشف تقاطع التعلم العميق والحوسبة التطورية، مما يوفر للقراء فهمًا شاملاً لكيفية دمج هذين المجالين لإنشاء أنظمة ذكاء اصطناعي أكثر قوة وقابلة للتكيف. يتكون الكتاب من أربعة أجزاء، يركز كل منها على جوانب مختلفة من التعلم العميق التطوري: البدء، وتحسين التعلم العميق، والتطبيقات المتقدمة، والتعلم المعزز. يقدم الجزء الأول مقدمة للتعلم العميق التطوري، ويغطي موضوعات مثل مبادئ الحوسبة التطورية والخوارزميات الجينية وإطار DEEP (التطور التفاضلي والبرمجة التطورية وتحسين أسراب الجسيمات). يتضمن هذا القسم أيضًا أمثلة عملية لكيفية استخدام الحوسبة التطورية لتحسين نماذج التعلم العميق.
'Evolutionary Deep arning, Genetic Algorithms 및 Neural Networks'는 딥 러닝과 진화 컴퓨팅의 교차점을 탐색하여이 두 분야를 결합하여보다 강력하고 적응 가능한 AI 시스템을 만드는 방법을 포괄적으로 이해합니다. 이 책은 진화론 적 딥 러닝의 다양한 측면에 중점을 둔 네 부분으로 구성되어 있습니다: 시작, 딥 러닝 최적화, 고급 응용 프로그램 및 강화 학습. 첫 번째 부분은 진화 컴퓨팅, 유전자 알고리즘 및 DEEP 프레임 워크 (차등 진화, 진화 프로그래밍 및 입자 군집 최적화) 와 같은 주제를 다루는 진화 딥 러닝에 대한 소개를 제공합니다. 이 섹션에는 딥 러닝 모델을 최적화하기 위해 진화 컴퓨팅을 사용하는 방법에 대한 실용적인 예도 포함되어 있습니
「Evolutionary Deep arning、 Genetic Algorithms、およびNeural Networks」は、ディープラーニングと進化的コンピューティングの交差点を探求し、これら2つの分野をどのように組み合わせてより強力で適応可能なAIシステムを作成できるかについての包括的な理解を提供する本です。この本は4つの部分で構成されており、それぞれが進化的ディープラーニングのさまざまな側面に焦点を当てています。第1部では、進化的ディープラーニングの紹介を行い、進化的コンピューティングの原理、遺伝的アルゴリズム、DEEPフレームワーク(Differential Evolution、 Evolutionary Programming、 Particle Swarm Optimization)などを取り上げます。このセクションでは、進化的コンピューティングを使用してディープラーニングモデルを最適化する方法の実例も紹介します。
「進化深度學習,遺傳算法和神經網絡」是一本探討深度學習與進化計算的交集的書,為讀者提供了有關如何將這兩個領域結合在一起以創建更強大,更適應的AI系統的詳盡見解。該書分為四個部分,每個部分都涉及進化深度學習的不同方面:入門,深度學習優化,高級應用和強化學習。第一部分介紹了進化深度學習的介紹,涵蓋了進化計算原理,遺傳算法和DEEP框架(差異進化,進化編程和粒子交換優化)等主題。本節還包括如何利用進化計算優化深度學習模型的實用示例。

You may also be interested in:

Understanding Machine Learning From Theory to Algorithms
Mathematical Analysis of Machine Learning Algorithms
Machine Learning Algorithms From Scratch with Python
Machine Learning Algorithms Using Python Programming
Applied Learning Algorithms for Intelligent IoT
Metaheuristics for Machine Learning Algorithms and Applications
Federated Learning From Algorithms to System Implementation
Metaheuristics for Machine Learning Algorithms and Applications
Mathematical Analysis of Machine Learning Algorithms
Information Theory, Inference, and Learning Algorithms
Learning Algorithms Through Programming and Puzzle Solving
Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl
The Comprehensive Guide to Machine Learning Algorithms and Techniques
Machine Learning Algorithms Using Scikit and TensorFlow Environments
Machine Learning Algorithms in Depth (Final Release)
Easily Practical Machine Learning Algorithms with Python
Machine Learning Algorithms in Depth (Final Release)
The Comprehensive Guide to Machine Learning Algorithms and Techniques
Introduction to Algorithms for Data Mining and Machine Learning
Machine Learning Algorithms Using Scikit and TensorFlow Environments
Machine Learning Refined Foundations, Algorithms, and Applications
Machine Learning Step-by-Step Guide To Implement Machine Learning Algorithms with Python
Learning Algorithms A Programmer|s Guide to Writing Better Code
Easy Learning Data Structures & Algorithms C++ Graphic Data Structures & Algorithms
Deep Learning
Machine Learning Refined Foundations, Algorithms and Applications. 2nd Edition
Machine Learning Safety (Artificial Intelligence: Foundations, Theory, and Algorithms)
Vectorization A Practical Guide to Efficient Implementations of Machine Learning Algorithms
Learning Algorithms A Programmer’s Guide to Writing Better Code (Early Release)
Bioinformatics Algorithms an Active Learning Approach, Vol. 1 (2nd edition)
Fuzzy Machine Learning Algorithms for Remote Sensing Image Classification
Bioinformatics Algorithms an Active Learning Approach, Vol. 2 (2nd edition)
Computer Vision Principles, Algorithms, Applications, Learning 5th Edition
Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms
Understanding Deep Learning
Deep Learning on Graphs
The Deep Learning Revolution
Deep Reinforcement Learning
Deep Learning For Dummies
Deep Learning for Engineers