BOOKS - Deep Learning
Deep Learning - Ian Goodfellow November 1, 2016 PDF  BOOKS
ECO~19 kg CO²

3 TON

Views
45154

Telegram
 
Deep Learning
Author: Ian Goodfellow
Year: November 1, 2016
Format: PDF
File size: PDF 19 MB
Language: English



Pay with Telegram STARS
DEEP LEARNING Introduction: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Unlike traditional machine learning, which requires human operators to specify all the knowledge that the computer needs, deep learning allows the computer to gather knowledge from experience, making it an essential tool for modern society. The hierarchy of concepts in deep learning is represented by a graph with many layers, allowing the computer to learn complicated concepts by building them out of simpler ones. This book provides a comprehensive introduction to deep learning, covering mathematical and conceptual background, relevant concepts in linear algebra, probability theory, and information theory, as well as practical applications in natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
DEEP LEARNING Введение: Глубокое обучение - это форма машинного обучения, которая позволяет компьютерам учиться на опыте и понимать мир с точки зрения иерархии понятий. В отличие от традиционного машинного обучения, которое требует от операторов-людей указания всех знаний, необходимых компьютеру, глубокое обучение позволяет компьютеру собирать знания из опыта, что делает его важным инструментом для современного общества. Иерархия понятий в глубоком обучении представлена графом с множеством слоев, позволяющим компьютеру изучать сложные понятия, выстраивая их из более простых. Эта книга содержит всестороннее введение в глубокое обучение, охватывающее математические и концептуальные основы, соответствующие концепции в линейной алгебре, теории вероятностей и теории информации, а также практические приложения в обработке естественного языка, распознавании речи, компьютерном зрении, системах онлайн-рекомендаций, биоинформатике и видеоиграх.
DEEP LEARNING Introduction : L'apprentissage profond est une forme d'apprentissage automatique qui permet aux ordinateurs d'apprendre de l'expérience et de comprendre le monde en termes de hiérarchie de concepts. Contrairement à l'apprentissage automatique traditionnel, qui exige des opérateurs humains d'indiquer toutes les connaissances nécessaires à l'ordinateur, l'apprentissage profond permet à l'ordinateur de recueillir des connaissances à partir de l'expérience, ce qui en fait un outil important pour la société moderne. La hiérarchie des concepts en apprentissage profond est représentée par un graphe à couches multiples qui permet à l'ordinateur d'apprendre des concepts complexes en les construisant à partir de concepts plus simples. Ce livre contient une introduction complète à l'apprentissage profond, couvrant les bases mathématiques et conceptuelles, les concepts correspondants dans l'algèbre linéaire, la théorie des probabilités et la théorie de l'information, ainsi que des applications pratiques dans le traitement du langage naturel, la reconnaissance vocale, la vision par ordinateur, les systèmes de recommandation en ligne, la bioinformatique et les jeux vidéo.
DEEP LEARNING Introducción: aprendizaje profundo es una forma de aprendizaje automático que permite a las computadoras aprender de la experiencia y entender el mundo en términos de jerarquía de conceptos. A diferencia del aprendizaje automático tradicional, que requiere que los operadores humanos indiquen todo el conocimiento que necesita el ordenador, el aprendizaje profundo permite que el ordenador recoja el conocimiento a partir de la experiencia, lo que lo convierte en una herramienta importante para la sociedad actual. La jerarquía de conceptos en el aprendizaje profundo está representada por un grafo con múltiples capas que permite al ordenador aprender conceptos complejos, construyéndolos a partir de otros más simples. Este libro contiene una introducción integral al aprendizaje profundo que abarca los fundamentos matemáticos y conceptuales correspondientes a conceptos en álgebra lineal, teoría de la probabilidad y teoría de la información, así como aplicaciones prácticas en el procesamiento del lenguaje natural, reconocimiento de voz, visión por computadora, sistemas de recomendación en línea, bioinformática y videojuegos.
DEEP LEARNING Introduzione: L'apprendimento profondo è una forma di apprendimento automatico che permette ai computer di imparare dall'esperienza e comprendere il mondo in termini di gerarchia dei concetti. A differenza del tradizionale apprendimento automatico, che richiede agli operatori umani di indicare tutte le conoscenze necessarie al computer, l'apprendimento profondo consente al computer di raccogliere le conoscenze dall'esperienza, rendendolo uno strumento importante per la società moderna. La gerarchia dei concetti nell'apprendimento approfondito è rappresentata da un grafico con più livelli che consente al computer di imparare i concetti complessi costruendoli da più semplici. Questo libro contiene un'introduzione completa all'apprendimento profondo, che comprende basi matematiche e concettuali che corrispondono a concetti in algebra lineare, teoria delle probabilità e teoria delle informazioni, e applicazioni pratiche nel trattamento del linguaggio naturale, riconoscimento vocale, visione informatica, sistemi di raccomandazione online, bioinformatica e videogiochi.
DEEP LEARNING Einführung: Deep arning ist eine Form des maschinellen rnens, die es Computern ermöglicht, aus Erfahrungen zu lernen und die Welt im nne einer Begriffshierarchie zu verstehen. Im Gegensatz zum traditionellen maschinellen rnen, bei dem menschliche Bediener alle Kenntnisse angeben müssen, die ein Computer benötigt, ermöglicht Deep arning dem Computer, Wissen aus Erfahrung zu sammeln, was ihn zu einem wichtigen Werkzeug für die moderne Gesellschaft macht. Die Hierarchie der Konzepte im Deep arning wird durch einen Graphen mit vielen Schichten dargestellt, der es einem Computer ermöglicht, komplexe Konzepte zu lernen und sie aus einfacheren aufzubauen. Dieses Buch bietet eine umfassende Einführung in Deep arning, die mathematische und konzeptionelle Grundlagen, relevante Konzepte in linearer Algebra, Wahrscheinlichkeitstheorie und Informationstheorie sowie praktische Anwendungen in natürlicher Sprachverarbeitung, Spracherkennung, Computer Vision, Online-Empfehlungssystemen, Bioinformatik und Videospielen umfasst.
''
DEEP LEARNING Giriş: Derin öğrenme, bilgisayarların deneyimlerden öğrenmelerini ve dünyayı bir kavram hiyerarşisi açısından anlamalarını sağlayan bir makine öğrenme şeklidir. İnsan operatörlerinin bir bilgisayarın ihtiyaç duyduğu tüm bilgileri belirtmesini gerektiren geleneksel makine öğreniminin aksine, derin öğrenme, bir bilgisayarın deneyimden bilgi toplamasına izin verir ve bu da onu modern toplum için önemli bir araç haline getirir. Derin öğrenmede kavramların hiyerarşisi, bir bilgisayarın karmaşık kavramları incelemesine ve daha basit olanlardan inşa etmesine izin veren birçok katmana sahip bir grafikle temsil edilir. Bu kitap, matematiksel ve kavramsal temelleri, doğrusal cebirdeki ilgili kavramları, olasılık teorisini ve bilgi teorisini, ayrıca doğal dil işleme, konuşma tanıma, bilgisayar görüşü, çevrimiçi öneri sistemleri, biyoinformatik ve video oyunlarındaki pratik uygulamaları kapsayan derin öğrenmeye kapsamlı bir giriş sunmaktadır.
DEEP LEARNING介紹:深度學習是一種機器學習形式,使計算機能夠從經驗中學習,並從概念層次的角度了解世界。與傳統的機器學習不同,傳統的機器學習要求人類操作員指示計算機所需的所有知識,而深度學習使計算機可以從經驗中收集知識,使其成為現代社會的重要工具。深入學習中的概念層次結構由具有多個層的圖表示,該圖允許計算機通過從更簡單的概念中構建復雜概念來研究復雜概念。本書全面介紹了深度學習,涵蓋了與線性代數,概率論和信息理論中的概念相對應的數學和概念框架,以及在自然語言處理,語音識別,計算機視覺,在線推薦系統,生物信息學和視頻遊戲中的實際應用。

You may also be interested in:

Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Deep Learning Beginner’s Guide to Learn the Realms of Deep Learning from A-Z
Hands-on Deep Learning A Guide to Deep Learning with Projects and Applications
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Deep Learning with Python Comprehensive Beginners Guide to Learn and Understand the Realms of Deep Learning with Python
Deep Learning With Python Simple and Effective Tips and Tricks to Learn Deep Learning with Python
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Deep Learning With Python Advanced and Effective Strategies of Using Deep Learning with Python Theories
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Deep Learning with Python The Ultimate Beginners Guide for Deep Learning with Python
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Deep Learning with Python The ultimate beginners guide to Learn Deep Learning with Python Step by Step
Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python
Python Deep Learning: Understand how deep neural networks work and apply them to real-world tasks
Deep Learning via Rust State of the Art Deep Learning in Rust
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Enneagram: Visible Learning and Deep Learning Book for Highly Sensitive Person