BOOKS - PROGRAMMING - Understanding Machine Learning From Theory to Algorithms
Understanding Machine Learning From Theory to Algorithms - Shai Shalev-Shwartz, Shai Ben-David 2014 PDF Cambridge University Press BOOKS PROGRAMMING
ECO~18 kg CO²

1 TON

Views
704453

 
Understanding Machine Learning From Theory to Algorithms
Author: Shai Shalev-Shwartz, Shai Ben-David
Year: 2014
Pages: 410
Format: PDF
File size: 10 MB
Language: ENG



Book Description: Understanding Machine Learning from Theory to Algorithms Author: Shai Shalev-Shwartz, Shai Ben-David 2014 410 Genre: Computer Science, Artificial Intelligence, Machine Learning Summary: Machine learning is one of the fastest-growing areas of computer science with far-reaching applications. This textbook aims to introduce machine learning and its algorithmic paradigms in a principled way, providing an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. The book covers topics such as linear regression, neural networks, support vector machines, clustering, and deep learning. Long Description of the Plot: In "Understanding Machine Learning from Theory to Algorithms the author takes readers on a journey through the evolution of technology, highlighting the need to study and understand the process of technological development as the basis for humanity's survival and the unification of people in a warring state. The book provides an in-depth look at the fundamental principles of machine learning, from theory to algorithms, and how they have evolved over time.
Understanding Machine arning from Theory to Algorithms Автор: Шай Шалев-Шварц, Шай Бен-Давид 2014 410 Жанр: информатика, искусственный интеллект, машинное обучение Резюме: машинное обучение - одна из самых быстрорастущих областей информатики с далеко идущими приложениями. Этот учебник направлен на принципиальное введение машинного обучения и его алгоритмических парадигм, предоставляя обширный теоретический отчет о фундаментальных идеях, лежащих в основе машинного обучения, и математических выводах, которые превращают эти принципы в практические алгоритмы. Книга охватывает такие темы, как линейная регрессия, нейронные сети, машины опорных векторов, кластеризация и глубокое обучение. Длинное описание сюжета: В «Understanding Machine arning from Theory to Algorithms» автор берет читателей в путешествие по эволюции технологий, подчеркивая необходимость изучения и понимания процесса технологического развития как основы выживания человечества и объединения людей в воюющем государстве. В книге дается глубокий взгляд на фундаментальные принципы машинного обучения, от теории до алгоритмов, и на то, как они развивались с течением времени.
Understanding Machine arning from Theory to Algorithms Autor: Shai Shalev-Schwartz, Shai Ben-David 2014 410 Género: informática, inteligencia artificial, aprendizaje automático Resumen: aprendizaje automático - uno de los las áreas de más rápido crecimiento de la informática con aplicaciones de largo alcance. Este libro de texto tiene como objetivo la introducción fundamental del aprendizaje automático y sus paradigmas algorítmicos, proporcionando un extenso relato teórico de las ideas fundamentales que subyacen al aprendizaje automático y las conclusiones matemáticas que convierten estos principios en algoritmos prácticos. libro abarca temas como la regresión lineal, las redes neuronales, las máquinas de vectores de referencia, la clusterización y el aprendizaje profundo. Larga descripción de la trama: En «Understanding Machine arning from Theory to Algorithms», el autor lleva a los lectores a un viaje por la evolución de la tecnología, destacando la necesidad de estudiar y entender el proceso de desarrollo tecnológico como base para la supervivencia de la humanidad y la unión de las personas en un estado en guerra. libro ofrece una visión profunda de los principios fundamentales del aprendizaje automático, desde la teoría hasta los algoritmos, y cómo han evolucionado a lo largo del tiempo.
Understanding Machine arning from Theory to Algorithms Autore: Shai Shalev-Schwartz, Shai Ben-David 2014 410 Genere: informatica, intelligenza artificiale, apprendimento automatico curriculum: apprendimento automatico è una delle aree in più rapida crescita dell'informatica con applicazioni ad ampio raggio. Questo manuale mira a introdurre l'apprendimento automatico e i suoi paradigmi algoritmici, fornendo un ampio rapporto teorico sulle idee fondamentali alla base dell'apprendimento automatico e sulle conclusioni matematiche che trasformano questi principi in algoritmi pratici. Il libro comprende temi quali la regressione lineare, le reti neurali, i vettori di supporto, il clustering e l'apprendimento approfondito. Una lunga descrizione della storia: in Understanding Machine arning from Theory to Algorithms, l'autore prende i lettori in un viaggio attraverso l'evoluzione tecnologica, sottolineando la necessità di studiare e comprendere il processo di sviluppo tecnologico come base per la sopravvivenza dell'umanità e per unire le persone in uno stato in guerra. Il libro fornisce una visione approfondita dei principi fondamentali dell'apprendimento automatico, dalla teoria agli algoritmi, e di come si sono evoluti nel corso del tempo.
''
理論からアルゴリズムへの機械学習を理解する著者:Shai Shalev-Schwartz、 Shai Ben-David 2014 410ジャンル:コンピュータサイエンス、人工知能、機械学習概要:機械学習は、広範なアプリケーションを持つコンピュータサイエンスの最も急速に成長している分野の1つです。この教科書は、機械学習とそのアルゴリズムのパラダイムを原理的に導入することを目的としており、機械学習の基礎となる基本的なアイデアと、これらの原理を実用的なアルゴリズムに変える数学的推論についての広範な理論的記述を提供している。この本では、線形回帰、ニューラルネットワーク、サポートベクトルマシン、クラスタリング、ディープラーニングなどのトピックを取り上げています。プロットの長い説明:理論からアルゴリズムへの機械学習を理解するには、著者は、人類の生存と戦争状態における人々の統一の基礎としての技術開発のプロセスを研究し、理解する必要性を強調し、技術の進化を通じて旅に読者を取ります。この本では、理論からアルゴリズムまでの機械学習の基本原理と、それらがどのように進化してきたかについて詳しく説明しています。

You may also be interested in:

Understanding Machine Learning From Theory to Algorithms
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Music Theory: From Beginner to Expert - The Ultimate Step-By-Step Guide to Understanding and Learning Music Theory Effortlessly (Essential Learning Tools for Musicians Book 1)
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning Theory to Applications
Machine Learning Theory and Applications
Machine Learning with Python Theory and Applications
Fundamentals of Optimization Theory With Applications to Machine Learning
Game Theory and Machine Learning for Cyber Security
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Machine Learning with Noisy Labels Definitions, Theory, Techniques and Solutions
Machine Learning with Noisy Labels Definitions, Theory, Techniques and Solutions
Machine Learning with Noisy Labels: Definitions, Theory, Techniques and Solutions
Machine Learning Safety (Artificial Intelligence: Foundations, Theory, and Algorithms)
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Recent Advances in Logo Detection Using Machine Learning Paradigms Theory and Practice
Recent Advances in Logo Detection Using Machine Learning Paradigms Theory and Practice
Introduction to Machine Learning with Security Theory and Practice Using Python in the Cloud, 2nd Edition
Machine Learning Theory and Applications Hands-on Use Cases with Python on Classical and Quantum Machines
The Demand for Life Insurance: Dynamic Ecological Systemic Theory Using Machine Learning Techniques
Machine Learning Theory and Applications Hands-on Use Cases with Python on Classical and Quantum Machines
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Interpreting Machine Learning Models With SHAP A Guide With Python Examples And Theory On Shapley Values
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition