BOOKS - Federated Learning From Algorithms to System Implementation
Federated Learning From Algorithms to System Implementation - Liefeng Bo, Heng Huang, Songxiang Gu, Yanqing Chen 2025 PDF World Scientific Publishing BOOKS
ECO~19 kg CO²

2 TON

Views
17165

Telegram
 
Federated Learning From Algorithms to System Implementation
Author: Liefeng Bo, Heng Huang, Songxiang Gu, Yanqing Chen
Year: 2025
Pages: 546
Format: PDF
File size: 24.9 MB
Language: ENG



Pay with Telegram STARS
Federated Learning: From Algorithms to System Implementation As we continue to advance in the digital age, it is becoming increasingly important to understand the process of technological evolution and its impact on humanity. In this article, we will explore the need and possibility of developing a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. The book "Federated Learning: From Algorithms to System Implementation" provides a comprehensive overview of Federated Learning technology, from its definition and characteristics to possible application scenarios and related privacy protection technologies. It also presents numerous novel Federated Learning algorithms that have not been summarized in other books. These algorithms include vertical and horizontal scenarios such as vertical federated tree models, linear regression, kernel learning, asynchronous methods, deep learning, homomorphic encryption, and reinforcement learning. Part one of the book lays the foundation for understanding Federated Learning by discussing its definition, characteristics, and possible application scenarios.
Федеративное обучение: от алгоритмов к внедрению системы По мере того, как мы продолжаем продвигаться в цифровую эпоху, становится все более важным понимание процесса технологической эволюции и его влияния на человечество. В этой статье мы исследуем необходимость и возможность выработки личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. В книге «Federated arning: From Algorithms to System Implementation» представлен всесторонний обзор технологии Federated arning, от ее определения и характеристик до возможных сценариев применения и связанных с ними технологий защиты конфиденциальности. В ней также представлены многочисленные новые алгоритмы федеративного обучения, которые не были обобщены в других книгах. Эти алгоритмы включают вертикальные и горизонтальные сценарии, такие как вертикальные федеративные модели дерева, линейная регрессия, обучение ядра, асинхронные методы, глубокое обучение, гомоморфное шифрование и обучение с подкреплением. Первая часть книги закладывает основу для понимания Federated arning, обсуждая его определение, характеристики и возможные сценарии применения.
Federative arning : des algorithmes à la mise en œuvre du système À mesure que nous continuons à avancer à l'ère numérique, il devient de plus en plus important de comprendre le processus d'évolution technologique et son impact sur l'humanité. Dans cet article, nous explorons la nécessité et la possibilité d'élaborer un paradigme personnel de la perception du processus technologique du développement de la connaissance moderne comme base de la survie de l'humanité et de la survie de l'unification des gens dans un État en guerre. livre Federated Arning : From Algorithms to System Implementation donne un aperçu complet de la technologie Federated Arning, de sa définition et de ses caractéristiques aux scénarios d'application possibles et aux technologies connexes de protection de la vie privée. Il présente également de nombreux nouveaux algorithmes d'apprentissage fédératif qui n'ont pas été généralisés dans d'autres livres. Ces algorithmes comprennent des scénarios verticaux et horizontaux tels que les modèles verticaux fédérés de l'arbre, la régression linéaire, l'apprentissage du noyau, les méthodes asynchrones, l'apprentissage profond, le cryptage homomorphe et l'apprentissage renforcé. La première partie du livre pose les bases de la compréhension de Federated arning en discutant de sa définition, de ses caractéristiques et des scénarios d'application possibles.
Aprendizaje federado: de los algoritmos a la implementación del sistema A medida que avanzamos en la era digital, es cada vez más importante comprender el proceso de evolución tecnológica y su impacto en la humanidad. En este artículo exploramos la necesidad y la posibilidad de generar un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base para la supervivencia de la humanidad y la supervivencia de la unión de los seres humanos en un Estado en guerra. libro «Federated Arning: From Algorithms to System Implementation» ofrece una visión general completa de la tecnología Federated Arning, desde su definición y características hasta posibles escenarios de aplicación y tecnologías de protección de la privacidad asociadas. También presenta numerosos algoritmos nuevos de aprendizaje federado que no han sido generalizados en otros libros. Estos algoritmos incluyen escenarios verticales y horizontales como modelos de árbol federados verticales, regresión lineal, aprendizaje de núcleo, técnicas asíncronas, aprendizaje profundo, cifrado homomórfico y entrenamiento con refuerzos. La primera parte del libro sienta las bases para la comprensión de Federated Arning, discutiendo su definición, características y posibles escenarios de aplicación.
Formazione federale: dagli algoritmi all'implementazione del sistema Mentre continuiamo ad avanzare nell'era digitale, diventa sempre più importante comprendere l'evoluzione tecnologica e il suo impatto sull'umanità. In questo articolo esploriamo la necessità e la possibilità di sviluppare un paradigma personale per la percezione del processo tecnologico dello sviluppo della conoscenza moderna come base della sopravvivenza dell'umanità e della sopravvivenza dell'unione delle persone in uno stato in guerra. Il libro «Federated arning: From Algorithms to System Influentation» fornisce una panoramica completa della tecnologia Federated arning, dalla sua definizione e caratteristiche ai possibili scenari di applicazione e alle relative tecnologie di privacy. Contiene anche numerosi nuovi algoritmi di apprendimento federale che non sono stati riassunti in altri libri. Questi algoritmi includono scenari verticali e orizzontali, quali modelli di legno federati verticali, regressione lineare, apprendimento del nucleo, metodi asincroni, formazione approfondita, crittografia omomomorfa e apprendimento con rinforzi. La prima parte del libro pone le basi per comprendere Federated arning, discutendone la definizione, le caratteristiche e i possibili scenari di applicazione.
Föderales rnen: Von Algorithmen zur Systemimplementierung Im digitalen Zeitalter wird es immer wichtiger, den technologischen Evolutionsprozess und seine Auswirkungen auf die Menschheit zu verstehen. In diesem Artikel untersuchen wir die Notwendigkeit und die Möglichkeit, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens als Grundlage für das Überleben der Menschheit und das Überleben der Vereinigung von Menschen in einem kriegführenden Staat zu entwickeln. Das Buch Federated arning: From Algorithms to System Implementation bietet einen umfassenden Überblick über die Federated arning-Technologie, von ihrer Definition und Charakterisierung bis hin zu möglichen Anwendungsszenarien und den damit verbundenen Datenschutztechnologien. Es präsentiert auch zahlreiche neue Algorithmen für föderiertes rnen, die nicht in anderen Büchern zusammengefasst wurden. Diese Algorithmen umfassen vertikale und horizontale Szenarien wie vertikale Verbundbaummodelle, lineare Regression, Kernel-Training, asynchrone Methoden, Deep arning, homomorphe Verschlüsselung und verstärktes rnen. Der erste Teil des Buches legt den Grundstein für das Verständnis von Federated arning und diskutiert dessen Definition, Eigenschaften und mögliche Anwendungsszenarien.
Sfederowane uczenie się: Od algorytmów do wdrażania systemu W miarę dalszego postępu w erze cyfrowej, zrozumienie procesu ewolucji technologicznej i jej wpływu na ludzkość staje się coraz ważniejsze. W tym artykule badamy potrzebę i możliwość opracowania osobistego paradygmatu postrzegania technologicznego procesu rozwoju nowoczesnej wiedzy jako podstawy do przetrwania ludzkości i przetrwania zjednoczenia ludzi w stanie wojennym. Książka „Federated arning: From Algorithms to System Implementation” zawiera kompleksowy przegląd technologii Federated arning, od jego definicji i cech do możliwych scenariuszy aplikacji i związanych z nimi technologii ochrony prywatności. Wprowadza również wiele nowych algorytmów uczenia się, które nie zostały uogólnione w innych książkach. Te algorytmy obejmują scenariusze pionowe i poziome, takie jak pionowe modele drzew federowanych, regresja liniowa, uczenie się jądra, metody asynchroniczne, głębokie uczenie się, szyfrowanie homomorficzne i uczenie się wzmacniania. Pierwsza część książki stanowi podstawę do zrozumienia Sfederowane arning poprzez omówienie jego definicji, cechy i możliwe scenariusze zastosowania.
Federated arning: מאלגוריתמים ליישום מערכת בעוד אנו ממשיכים להתקדם לעידן הדיגיטלי, הבנת תהליך האבולוציה הטכנולוגית והשפעתה על האנושות נעשים חשובים יותר. במאמר זה, אנו בוחנים את הצורך והאפשרות לפתח פרדיגמה אישית לתפיסה של התהליך הטכנולוגי של התפתחות הידע המודרני כבסיס להישרדות האנושות ולהישרדות של איחוד אנשים במצב לוחמני. הספר ”Federated Arning: From Algorithms to System Application” מספק סקירה מקיפה של טכנולוגיית ה-Federated Arning, החל מהגדרתה ומאפייניה וכלה בתרחישי יישומים אפשריים וטכנולוגיות הגנת פרטיות קשורות. הוא גם מציג מספר רב של אלגוריתמי למידה פדרליים חדשים שלא הוכללו בספרים אחרים. אלגוריתמים אלה כוללים תרחישים אנכיים ואופקיים כגון מודלים אנכיים של עץ, רגרסיה ליניארית, למידת גרעין, שיטות אסינכרוניות, למידה עמוקה, הצפנה הומומורפית ולמידה של חיזוק. החלק הראשון של הספר מניח את היסודות להבנת Federated Arning על ידי דיון בהגדרתו, מאפייניו, ותרחישי יישום אפשריים.''
Federe Öğrenme: Algoritmalardan stem Uygulamasına Dijital çağda ilerlemeye devam ettikçe, teknolojik evrim sürecini ve insanlık üzerindeki etkisini anlamak daha önemli hale geliyor. Bu makalede, modern bilginin gelişiminin teknolojik sürecinin algılanması için, insanlığın hayatta kalması ve savaşan bir durumda insanların birleşmesinin hayatta kalması için temel olarak kişisel bir paradigma geliştirme ihtiyacını ve olasılığını araştırıyoruz. "Federe arning: Algoritmalardan stem Uygulamasına" kitabı, tanımından ve özelliklerinden olası uygulama senaryolarına ve ilgili gizlilik koruma teknolojilerine kadar Federe arning teknolojisine kapsamlı bir genel bakış sunar. Ayrıca, diğer kitaplarda genelleştirilmemiş çok sayıda yeni federe öğrenme algoritması sunar. Bu algoritmalar dikey federe ağaç modelleri, doğrusal regresyon, çekirdek öğrenme, asenkron yöntemler, derin öğrenme, homomorfik şifreleme ve takviye öğrenme gibi dikey ve yatay senaryoları içerir. Kitabın ilk kısmı, tanımını, özelliklerini ve olası uygulama senaryolarını tartışarak Federated arning'i anlamak için zemin hazırlar.
التعلم الموحد: من الخوارزميات إلى تنفيذ النظام مع استمرارنا في التقدم إلى العصر الرقمي، أصبح فهم عملية التطور التكنولوجي وتأثيرها على البشرية أكثر أهمية. في هذه المقالة، نستكشف الحاجة وإمكانية تطوير نموذج شخصي لتصور العملية التكنولوجية لتطوير المعرفة الحديثة كأساس لبقاء البشرية وبقاء توحيد الناس في دولة متحاربة. يقدم كتاب «التعلم الموحد: من الخوارزميات إلى تنفيذ النظام» نظرة عامة شاملة على تقنية التعلم الموحدة، من تعريفها وخصائصها إلى سيناريوهات التطبيق المحتملة وتقنيات حماية الخصوصية ذات الصلة. كما يقدم العديد من خوارزميات التعلم الفيدرالية الجديدة التي لم يتم تعميمها في كتب أخرى. تتضمن هذه الخوارزميات سيناريوهات رأسية وأفقية مثل نماذج الأشجار الفيدرالية الرأسية، والانحدار الخطي، وتعلم النواة، والطرق غير المتزامنة، والتعلم العميق، والتشفير المتجانس، والتعلم المعزز. يضع الجزء الأول من الكتاب الأساس لفهم التعلم الموحد من خلال مناقشة تعريفه وخصائصه وسيناريوهات التطبيق المحتملة.
聯邦學習:從算法到系統實施隨著我們在數字時代的不斷發展,了解技術進化過程及其對人類的影響變得越來越重要。本文探討了將現代知識的技術發展過程視為人類生存和人類在交戰國團結生存的基礎的必要性和可行性。《聯邦防護:從算法到系統實施》一書全面概述了聯邦防護技術,從其定義和特征到可能的應用場景和相關隱私保護技術。它還具有許多新的聯邦學習算法,這些算法尚未在其他書籍中推廣。這些算法包括垂直和水平場景,例如垂直聯合樹模型,線性回歸,內核學習,異步技術,深度學習,同態加密和強化學習。本書的第一部分通過討論其定義,特征和可能的應用方案,為Federated的理解奠定了基礎。

You may also be interested in:

Federated Learning From Algorithms to System Implementation
Federated Learning From Algorithms to System Implementation
Learning Algorithms for Internet of Things Applying Python Tools to Improve Data Collection Use for System Performance
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Federated Learning: Theory and Practice
Federated Learning Theory and Practice
Federated Learning Theory and Practice
Federated Learning Principles, Paradigms, and Applications
Federated Learning Principles, Paradigms, and Applications
Federated Learning: Principles, Paradigms, and Applications
Federated Learning for Future Intelligent Wireless Networks
Handbook on Federated Learning Advances, Applications and Opportunities
Federated Learning Unlocking the Power of Collaborative Intelligence
Federated Learning for Future Intelligent Wireless Networks
Federated Learning Techniques and Its Application in the Healthcare Industry
Communication Efficient Federated Learning for Wireless Networks
Federated Learning Unlocking the Power of Collaborative Intelligence
Federated Learning Techniques and Its Application in the Healthcare Industry
Federated Learning for Smart Communication using IoT Application
Communication Efficient Federated Learning for Wireless Networks
Federated Learning for Future Intelligent Wireless Networks
Handbook on Federated Learning Advances, Applications and Opportunities
Communication Efficient Federated Learning for Wireless Networks
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Federated Learning for Multimedia Data Processing and Security in Industry 5.0
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Advancing Software Engineering Through AI, Federated Learning, and Large Language Models
Federated Deep Learning for Healthcare A Practical Guide with Challenges and Opportunities
Federated Deep Learning for Healthcare A Practical Guide with Challenges and Opportunities
Advancing Software Engineering Through AI, Federated Learning, and Large Language Models
Learning and Operating Presto Fast Federated SQL Analytics (Early Release)
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures, Frameworks and Applications