BOOKS - Federated Learning From Algorithms to System Implementation
Federated Learning From Algorithms to System Implementation - Liefeng Bo, Heng Huang, Songxiang Gu, Yanqing Chen 2025 PDF World Scientific Publishing BOOKS
ECO~19 kg CO²

2 TON

Views
17141

Telegram
 
Federated Learning From Algorithms to System Implementation
Author: Liefeng Bo, Heng Huang, Songxiang Gu, Yanqing Chen
Year: 2025
Pages: 546
Format: PDF
File size: 24.9 MB
Language: ENG



Pay with Telegram STARS
Federated Learning: From Algorithms to System Implementation As we continue to advance in the digital age, it is becoming increasingly important to understand the process of technological evolution and its impact on humanity. In this article, we will explore the need and possibility of developing a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. The book "Federated Learning: From Algorithms to System Implementation" provides a comprehensive overview of Federated Learning technology, from its definition and characteristics to possible application scenarios and related privacy protection technologies. It also presents numerous novel Federated Learning algorithms that have not been summarized in other books. These algorithms include vertical and horizontal scenarios such as vertical federated tree models, linear regression, kernel learning, asynchronous methods, deep learning, homomorphic encryption, and reinforcement learning. Part one of the book lays the foundation for understanding Federated Learning by discussing its definition, characteristics, and possible application scenarios.
Федеративное обучение: от алгоритмов к внедрению системы По мере того, как мы продолжаем продвигаться в цифровую эпоху, становится все более важным понимание процесса технологической эволюции и его влияния на человечество. В этой статье мы исследуем необходимость и возможность выработки личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. В книге «Federated arning: From Algorithms to System Implementation» представлен всесторонний обзор технологии Federated arning, от ее определения и характеристик до возможных сценариев применения и связанных с ними технологий защиты конфиденциальности. В ней также представлены многочисленные новые алгоритмы федеративного обучения, которые не были обобщены в других книгах. Эти алгоритмы включают вертикальные и горизонтальные сценарии, такие как вертикальные федеративные модели дерева, линейная регрессия, обучение ядра, асинхронные методы, глубокое обучение, гомоморфное шифрование и обучение с подкреплением. Первая часть книги закладывает основу для понимания Federated arning, обсуждая его определение, характеристики и возможные сценарии применения.
Federative arning : des algorithmes à la mise en œuvre du système À mesure que nous continuons à avancer à l'ère numérique, il devient de plus en plus important de comprendre le processus d'évolution technologique et son impact sur l'humanité. Dans cet article, nous explorons la nécessité et la possibilité d'élaborer un paradigme personnel de la perception du processus technologique du développement de la connaissance moderne comme base de la survie de l'humanité et de la survie de l'unification des gens dans un État en guerre. livre Federated Arning : From Algorithms to System Implementation donne un aperçu complet de la technologie Federated Arning, de sa définition et de ses caractéristiques aux scénarios d'application possibles et aux technologies connexes de protection de la vie privée. Il présente également de nombreux nouveaux algorithmes d'apprentissage fédératif qui n'ont pas été généralisés dans d'autres livres. Ces algorithmes comprennent des scénarios verticaux et horizontaux tels que les modèles verticaux fédérés de l'arbre, la régression linéaire, l'apprentissage du noyau, les méthodes asynchrones, l'apprentissage profond, le cryptage homomorphe et l'apprentissage renforcé. La première partie du livre pose les bases de la compréhension de Federated arning en discutant de sa définition, de ses caractéristiques et des scénarios d'application possibles.
Aprendizaje federado: de los algoritmos a la implementación del sistema A medida que avanzamos en la era digital, es cada vez más importante comprender el proceso de evolución tecnológica y su impacto en la humanidad. En este artículo exploramos la necesidad y la posibilidad de generar un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base para la supervivencia de la humanidad y la supervivencia de la unión de los seres humanos en un Estado en guerra. libro «Federated Arning: From Algorithms to System Implementation» ofrece una visión general completa de la tecnología Federated Arning, desde su definición y características hasta posibles escenarios de aplicación y tecnologías de protección de la privacidad asociadas. También presenta numerosos algoritmos nuevos de aprendizaje federado que no han sido generalizados en otros libros. Estos algoritmos incluyen escenarios verticales y horizontales como modelos de árbol federados verticales, regresión lineal, aprendizaje de núcleo, técnicas asíncronas, aprendizaje profundo, cifrado homomórfico y entrenamiento con refuerzos. La primera parte del libro sienta las bases para la comprensión de Federated Arning, discutiendo su definición, características y posibles escenarios de aplicación.
Föderales rnen: Von Algorithmen zur Systemimplementierung Im digitalen Zeitalter wird es immer wichtiger, den technologischen Evolutionsprozess und seine Auswirkungen auf die Menschheit zu verstehen. In diesem Artikel untersuchen wir die Notwendigkeit und die Möglichkeit, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens als Grundlage für das Überleben der Menschheit und das Überleben der Vereinigung von Menschen in einem kriegführenden Staat zu entwickeln. Das Buch Federated arning: From Algorithms to System Implementation bietet einen umfassenden Überblick über die Federated arning-Technologie, von ihrer Definition und Charakterisierung bis hin zu möglichen Anwendungsszenarien und den damit verbundenen Datenschutztechnologien. Es präsentiert auch zahlreiche neue Algorithmen für föderiertes rnen, die nicht in anderen Büchern zusammengefasst wurden. Diese Algorithmen umfassen vertikale und horizontale Szenarien wie vertikale Verbundbaummodelle, lineare Regression, Kernel-Training, asynchrone Methoden, Deep arning, homomorphe Verschlüsselung und verstärktes rnen. Der erste Teil des Buches legt den Grundstein für das Verständnis von Federated arning und diskutiert dessen Definition, Eigenschaften und mögliche Anwendungsszenarien.
''
Federe Öğrenme: Algoritmalardan stem Uygulamasına Dijital çağda ilerlemeye devam ettikçe, teknolojik evrim sürecini ve insanlık üzerindeki etkisini anlamak daha önemli hale geliyor. Bu makalede, modern bilginin gelişiminin teknolojik sürecinin algılanması için, insanlığın hayatta kalması ve savaşan bir durumda insanların birleşmesinin hayatta kalması için temel olarak kişisel bir paradigma geliştirme ihtiyacını ve olasılığını araştırıyoruz. "Federe arning: Algoritmalardan stem Uygulamasına" kitabı, tanımından ve özelliklerinden olası uygulama senaryolarına ve ilgili gizlilik koruma teknolojilerine kadar Federe arning teknolojisine kapsamlı bir genel bakış sunar. Ayrıca, diğer kitaplarda genelleştirilmemiş çok sayıda yeni federe öğrenme algoritması sunar. Bu algoritmalar dikey federe ağaç modelleri, doğrusal regresyon, çekirdek öğrenme, asenkron yöntemler, derin öğrenme, homomorfik şifreleme ve takviye öğrenme gibi dikey ve yatay senaryoları içerir. Kitabın ilk kısmı, tanımını, özelliklerini ve olası uygulama senaryolarını tartışarak Federated arning'i anlamak için zemin hazırlar.
التعلم الموحد: من الخوارزميات إلى تنفيذ النظام مع استمرارنا في التقدم إلى العصر الرقمي، أصبح فهم عملية التطور التكنولوجي وتأثيرها على البشرية أكثر أهمية. في هذه المقالة، نستكشف الحاجة وإمكانية تطوير نموذج شخصي لتصور العملية التكنولوجية لتطوير المعرفة الحديثة كأساس لبقاء البشرية وبقاء توحيد الناس في دولة متحاربة. يقدم كتاب «التعلم الموحد: من الخوارزميات إلى تنفيذ النظام» نظرة عامة شاملة على تقنية التعلم الموحدة، من تعريفها وخصائصها إلى سيناريوهات التطبيق المحتملة وتقنيات حماية الخصوصية ذات الصلة. كما يقدم العديد من خوارزميات التعلم الفيدرالية الجديدة التي لم يتم تعميمها في كتب أخرى. تتضمن هذه الخوارزميات سيناريوهات رأسية وأفقية مثل نماذج الأشجار الفيدرالية الرأسية، والانحدار الخطي، وتعلم النواة، والطرق غير المتزامنة، والتعلم العميق، والتشفير المتجانس، والتعلم المعزز. يضع الجزء الأول من الكتاب الأساس لفهم التعلم الموحد من خلال مناقشة تعريفه وخصائصه وسيناريوهات التطبيق المحتملة.

You may also be interested in:

Federated Learning From Algorithms to System Implementation
Federated Learning From Algorithms to System Implementation
Learning Algorithms for Internet of Things Applying Python Tools to Improve Data Collection Use for System Performance
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Federated Learning: Theory and Practice
Federated Learning Theory and Practice
Federated Learning Theory and Practice
Federated Learning Principles, Paradigms, and Applications
Federated Learning: Principles, Paradigms, and Applications
Federated Learning Principles, Paradigms, and Applications
Federated Learning for Smart Communication using IoT Application
Communication Efficient Federated Learning for Wireless Networks
Handbook on Federated Learning Advances, Applications and Opportunities
Federated Learning for Future Intelligent Wireless Networks
Federated Learning for Future Intelligent Wireless Networks
Federated Learning Techniques and Its Application in the Healthcare Industry
Communication Efficient Federated Learning for Wireless Networks
Federated Learning for Future Intelligent Wireless Networks
Federated Learning Techniques and Its Application in the Healthcare Industry
Handbook on Federated Learning Advances, Applications and Opportunities
Federated Learning Unlocking the Power of Collaborative Intelligence
Federated Learning Unlocking the Power of Collaborative Intelligence
Communication Efficient Federated Learning for Wireless Networks
Federated Learning for Multimedia Data Processing and Security in Industry 5.0
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Advancing Software Engineering Through AI, Federated Learning, and Large Language Models
Federated Deep Learning for Healthcare A Practical Guide with Challenges and Opportunities
Federated Deep Learning for Healthcare A Practical Guide with Challenges and Opportunities
Advancing Software Engineering Through AI, Federated Learning, and Large Language Models
Learning and Operating Presto Fast Federated SQL Analytics (Early Release)
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)
Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures, Frameworks and Applications