BOOKS - Artificial Intelligence Using Federated Learning Fundamentals, Challenges, an...
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications - Ahmed A Elngar, Diego Oliva, Valentina E. Balas 2025 PDF | EPUB CRC Press BOOKS
ECO~15 kg CO²

1 TON

Views
16816

Telegram
 
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Author: Ahmed A Elngar, Diego Oliva, Valentina E. Balas
Year: 2025
Pages: 309
Format: PDF | EPUB
File size: 24.5 MB
Language: ENG



Pay with Telegram STARS
The book "Artificial Intelligence Using Federated Learning Fundamentals Challenges and Applications" explores the potential of federated learning to address some of the most pressing challenges facing the field of artificial intelligence today. From the ethical implications of data privacy to the technical limitations of current AI systems, this book provides a comprehensive overview of the opportunities and challenges presented by federated learning. The authors argue that the development of more advanced AI systems requires a deep understanding of the underlying principles of machine learning and their applications in real-world scenarios. The book begins by discussing the importance of understanding the fundamentals of federated learning, including the key concepts of decentralized training and data heterogeneity. It then delves into the challenges associated with implementing federated learning in real-world scenarios, such as dealing with non-IID data distributions and managing communication overheads between devices. Finally, it highlights the potential applications of federated learning in areas such as computer vision, natural language processing, and recommender systems. Throughout the book, the authors emphasize the need for a personal paradigm for perceiving the technological process of developing modern knowledge, one that recognizes the interconnectedness of all things and the importance of collaboration in achieving meaningful progress. They argue that by embracing this paradigm, we can better navigate the complex and rapidly evolving landscape of AI research and development.
Книга «Искусственный интеллект с использованием федеративных основ обучения и приложений» исследует потенциал федеративного обучения для решения некоторых из наиболее острых проблем, стоящих сегодня перед областью искусственного интеллекта. От этических последствий конфиденциальности данных до технических ограничений существующих систем искусственного интеллекта, эта книга содержит всесторонний обзор возможностей и проблем, связанных с объединенным обучением. Авторы утверждают, что разработка более совершенных систем ИИ требует глубокого понимания основополагающих принципов машинного обучения и их применения в реальных сценариях. Книга начинается с обсуждения важности понимания основ федеративного обучения, включая ключевые концепции децентрализованного обучения и неоднородности данных. Затем он углубляется в проблемы, связанные с внедрением федеративного обучения в реальных сценариях, таких как работа с распределениями данных без IID и управление накладными расходами на связь между устройствами. Наконец, в нем освещаются потенциальные применения федеративного обучения в таких областях, как компьютерное зрение, обработка естественного языка и рекомендательные системы. На протяжении всей книги авторы подчеркивают необходимость личной парадигмы восприятия технологического процесса развития современных знаний, такой, которая признает взаимосвязанность всех вещей и важность сотрудничества в достижении значимого прогресса. Они утверждают, что, приняв эту парадигму, мы сможем лучше ориентироваться в сложном и быстро развивающемся ландшафте исследований и разработок ИИ.
livre « L'intelligence artificielle en utilisant les bases fédératives de l'apprentissage et des applications » explore le potentiel de l'apprentissage fédératif pour relever certains des défis les plus urgents auxquels le domaine de l'intelligence artificielle est aujourd'hui confronté. Des implications éthiques de la confidentialité des données aux contraintes techniques des systèmes d'intelligence artificielle existants, ce livre présente un aperçu complet des possibilités et des défis liés à l'apprentissage combiné. s auteurs affirment que le développement de meilleurs systèmes d'IA exige une compréhension approfondie des principes fondamentaux de l'apprentissage automatique et de leur application dans des scénarios réels. livre commence par discuter de l'importance de comprendre les fondements de l'apprentissage fédéral, y compris les concepts clés de l'apprentissage décentralisé et de l'hétérogénéité des données. Ensuite, il explore les problèmes liés à la mise en œuvre de l'apprentissage fédératif dans des scénarios réels, tels que le travail avec des distributions de données sans IID et la gestion des frais généraux de communication entre les appareils. Enfin, il met en lumière les applications potentielles de l'apprentissage fédératif dans des domaines tels que la vision par ordinateur, le traitement du langage naturel et les systèmes de recommandation. Tout au long du livre, les auteurs soulignent la nécessité d'un paradigme personnel de perception du processus technologique du développement des connaissances modernes, qui reconnaît l'interdépendance de toutes les choses et l'importance de la coopération pour faire des progrès significatifs. Ils affirment qu'en adoptant ce paradigme, nous pourrons mieux nous orienter dans le paysage complexe et en évolution rapide de la recherche et du développement en IA.
libro «Inteligencia Artificial Utilizando Bases Federadas de Aprendizaje y Aplicaciones» explora el potencial del aprendizaje federado para resolver algunos de los problemas más agudos que enfrenta hoy el campo de la inteligencia artificial. Desde las implicaciones éticas de la privacidad de los datos hasta las limitaciones técnicas de los sistemas de inteligencia artificial existentes, este libro ofrece una visión general completa de las oportunidades y desafíos relacionados con el aprendizaje combinado. autores sostienen que el desarrollo de mejores sistemas de IA requiere una comprensión profunda de los principios fundamentales del aprendizaje automático y su aplicación en escenarios reales. libro comienza discutiendo la importancia de entender los fundamentos del aprendizaje federado, incluyendo conceptos clave del aprendizaje descentralizado y la heterogeneidad de los datos. A continuación, profundiza en los problemas relacionados con la implementación del aprendizaje federado en escenarios reales, como trabajar con distribuciones de datos sin IID y administrar los gastos generales de comunicación entre dispositivos. Por último, destaca las posibles aplicaciones del aprendizaje federado en ámbitos como la visión por ordenador, el tratamiento del lenguaje natural y los sistemas de recomendación. A lo largo del libro, los autores destacan la necesidad de un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno, uno que reconozca la interrelación de todas las cosas y la importancia de colaborar para lograr avances significativos. Sostienen que, al adoptar este paradigma, podremos navegar mejor en un paisaje complejo y en rápido desarrollo de investigación y desarrollo de IA.
L'intelligenza artificiale con basi federali di apprendimento e applicazioni esplora il potenziale dell'apprendimento federale per affrontare alcuni dei problemi più urgenti che l'intelligenza artificiale deve affrontare. Dagli effetti etici della privacy dei dati ai limiti tecnici dei sistemi di intelligenza artificiale esistenti, questo libro fornisce una panoramica completa delle funzionalità e dei problemi legati all'apprendimento unificato. Gli autori sostengono che sviluppare sistemi di IA più avanzati richiede una profonda comprensione dei principi fondamentali dell'apprendimento automatico e della loro applicazione in scenari reali. Il libro inizia discutendo l'importanza di comprendere le basi dell'apprendimento federale, inclusi i concetti chiave per l'apprendimento decentralizzato e l'eterogeneità dei dati. approfondisce quindi sui problemi legati all'implementazione dell'apprendimento federale in scenari reali, come ad esempio la distribuzione dei dati senza IID e la gestione dei costi generali di comunicazione tra dispositivi. Infine, mette in luce le potenziali applicazioni della formazione federale in settori quali la visione informatica, l'elaborazione del linguaggio naturale e i sistemi di raccomandazione. Durante tutto il libro, gli autori sottolineano la necessità di un paradigma personale della percezione del processo tecnologico di sviluppo delle conoscenze moderne, tale da riconoscere l'interconnessione di tutte le cose e l'importanza di collaborare per fare progressi significativi. Sostengono che, adottando questo paradigma, possiamo orientarci meglio in un panorama complesso e in rapida evoluzione di ricerca e sviluppo dell'intelligenza artificiale.
Das Buch „Künstliche Intelligenz mit föderierten rn- und Anwendungsgrundlagen“ untersucht das Potenzial des föderierten rnens, um einige der drängendsten Probleme zu lösen, mit denen der Bereich der künstlichen Intelligenz heute konfrontiert ist. Von den ethischen Implikationen des Datenschutzes bis hin zu den technischen Grenzen bestehender KI-Systeme bietet dieses Buch einen umfassenden Überblick über die Möglichkeiten und Herausforderungen des kombinierten rnens. Die Autoren argumentieren, dass die Entwicklung fortschrittlicherer KI-Systeme ein tiefes Verständnis der grundlegenden Prinzipien des maschinellen rnens und ihrer Anwendung in realen Szenarien erfordert. Das Buch beginnt mit einer Diskussion über die Bedeutung des Verständnisses der Grundlagen des föderativen rnens, einschließlich der Schlüsselkonzepte des dezentralen rnens und der Heterogenität von Daten. Es geht dann tiefer in die Herausforderungen ein, die mit der Implementierung von Federated arning in realen Szenarien verbunden sind, wie z. B. die Arbeit mit Nicht-IID-Datenverteilungen und die Verwaltung des Kommunikationsaufwands zwischen Geräten. Schließlich werden mögliche Anwendungen des föderierten rnens in Bereichen wie Computer Vision, natürliche Sprachverarbeitung und Empfehlungssysteme hervorgehoben. Im Laufe des Buches betonen die Autoren die Notwendigkeit eines persönlichen Paradigmas für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens, eines, das die Wechselbeziehung aller Dinge und die Bedeutung der Zusammenarbeit erkennt, um sinnvolle Fortschritte zu erzielen. e argumentieren, dass wir durch die Übernahme dieses Paradigmas die komplexe und sich schnell entwickelnde KI-Forschungs- und Entwicklungslandschaft besser navigieren können.
''
"Artificial Intelligence Using Federated arning Frameworks and Applications" (Birleşik Öğrenme Çerçevelerini ve Uygulamalarını Kullanarak Yapay Zeka) adlı kitap, bugün yapay zeka alanının karşılaştığı en acil sorunlardan bazılarını ele almak için federe öğrenmenin potansiyelini araştırıyor. Veri gizliliğinin etik etkilerinden mevcut AI sistemlerinin teknik sınırlamalarına kadar, bu kitap federe öğrenme ile ilgili fırsatlar ve zorluklar hakkında kapsamlı bir genel bakış sunar. Yazarlar, daha iyi AI sistemlerinin geliştirilmesinin, makine öğreniminin temel ilkelerinin ve gerçek dünya senaryolarındaki uygulamalarının derinlemesine anlaşılmasını gerektirdiğini savunuyor. Kitap, merkezi olmayan öğrenme ve veri heterojenliğinin temel kavramları da dahil olmak üzere federe öğrenmenin temellerini anlamanın önemini tartışarak başlıyor. Daha sonra, IID olmayan veri tahsisleriyle çalışmak ve cihazlar arasındaki iletişim yükünü yönetmek gibi gerçek dünya senaryolarında federe öğrenmenin uygulanmasıyla ilgili zorlukları araştırır. Son olarak, bilgisayar görüşü, doğal dil işleme ve önerici sistemler gibi alanlarda federe öğrenmenin potansiyel uygulamalarını vurgular. Kitap boyunca yazarlar, modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigma ihtiyacını, her şeyin birbirine bağlılığını ve anlamlı bir ilerleme elde etmede işbirliğinin önemini kabul eden bir ihtiyaç olduğunu vurgulamaktadır. Bu paradigmayı benimseyerek, karmaşık ve hızla gelişen AI araştırma ve geliştirme manzarasında daha iyi gezinebileceğimizi savunuyorlar.
「使用聯邦學習基礎和應用的人工智能」一書探討了聯邦學習解決當今人工智能領域面臨的一些最緊迫問題的潛力。從數據隱私的倫理含義到現有人工智能系統的技術局限性,本書全面概述了合並學習帶來的機遇和挑戰。作者認為,開發更先進的AI系統需要深入了解機器學習的基本原理及其在現實世界中的應用。本書首先討論了了解聯合學習基礎的重要性,包括分散學習和數據異質性的關鍵概念。然後,他深入研究了在現實世界場景中引入聯合學習的挑戰,例如處理沒有IID的數據分配以及管理設備之間的通信開銷。最後,它強調了聯合學習在計算機視覺,自然語言處理和推薦系統等領域的潛在應用。在整個書中,作者強調需要一種個人範式,以感知現代知識發展的過程過程,這種過程認識到所有事物的相互聯系以及合作在取得有意義進展方面的重要性。他們認為,通過采用這種範式,我們將能夠更好地駕馭復雜且快速發展的AI研發環境。

You may also be interested in:

Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Federated Learning: Unlocking the Power of Collaborative Intelligence (Chapman and Hall CRC Artificial Intelligence and Robotics Series)
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Key Digital Trends in Artificial Intelligence and Robotics: Proceedings of 4th International Conference on Deep Learning, Artificial Intelligence and … (Lecture Notes in Networks and Systems, 67
Federated Learning Unlocking the Power of Collaborative Intelligence
Federated Learning Unlocking the Power of Collaborative Intelligence
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Artificial Intelligence 4 books in 1 AI For Beginners + AI For Business + Machine Learning For Beginners + Machine Learning And Artificial Intelligence
Fundamentals of Artificial Intelligence
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
Understanding Artificial Intelligence Fundamentals and Applications
Artificial Intelligence for Intelligent Systems Fundamentals, Challenges, and Applications
Artificial Intelligence for Intelligent Systems Fundamentals, Challenges, and Applications
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Understanding Artificial Intelligence Fundamentals, Use Cases and Methods for a Corporate AI Journey
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Artificial Intelligence and Machine Learning
Artificial Intelligence and Machine Learning
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Basic Math for AI: A Beginner|s Quickstart Guide to the Mathematical Foundations of Artificial Intelligence (AI Fundamentals)
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Artificial Intelligence With an Introduction to Machine Learning, Second Edition
Societal Impacts of Artificial Intelligence and Machine Learning
Artificial Intelligence for Learning: How to use AI to Support Employee Development
Artificial Intelligence and Deep Learning for Decision Makers
Artificial Intelligence and Machine Learning for Smart Community
Machine Learning Architecture in the age of Artificial Intelligence
Artificial Intelligence and Machine Learning for Smart Community