BOOKS - Mathematical Methods in Data Science
Mathematical Methods in Data Science - Jingli Ren January 25, 2023 PDF  BOOKS
ECO~26 kg CO²

2 TON

Views
49311

Telegram
 
Mathematical Methods in Data Science
Author: Jingli Ren
Year: January 25, 2023
Format: PDF
File size: PDF 8.9 MB
Language: English



Pay with Telegram STARS
Book Description: Mathematical Methods in Data Science Jingli Ren January 25, 2023 Jingli Ren Genre: Non-Fiction, Technology, Data Science Summary: In today's world, data science has become an integral part of our daily lives, from social media to healthcare, finance, and education. With the rapid evolution of technology, it is essential to understand the process of technological advancements and their impact on humanity. In his book "Mathematical Methods in Data Science [author name] presents a comprehensive guide to the mathematical tools used in data science, highlighting the need for a personal paradigm to perceive the technological process of developing modern knowledge as the basis for human survival. The book covers a broad range of mathematical tools used in data science, including calculus, linear algebra, optimization, network analysis, probability, and differential equations. The author introduces a new approach based on network analysis to integrate big data into the framework of ordinary and partial differential equations for data analysis and prediction. This approach makes the book accessible to researchers and graduate students in mathematics and data science, providing clear explanations of advanced mathematical concepts, especially data-driven differential equations. The book includes examples and problems arising in data science, making it an excellent resource for those looking to deepen their understanding of mathematical methods in data science. With the increasing use of data science in various fields, this book is a must-read for anyone looking to stay up-to-date with the latest developments in the field. Introduction: In the modern world, technology has become an integral part of our daily lives.
''
Jingli Renデータサイエンスの数学的方法25 1月2023 Jingli Renジャンル: ノンフィクション文学、テクノロジー、データサイエンスの概要:今日の世界では、データサイエンスはソーシャルメディアから健康、金融、教育まで、私たちの日常生活の不可欠な部分となっています。技術の急速な発展に伴い、技術の進歩と人類への影響のプロセスを理解することが重要です。著書「Mathematical Methods in Data Science」(著者の名前)では、データサイエンスに使用される数学的ツールの包括的なガイドを提供し、現代の知識を開発する技術プロセスを人間の生存の基礎として認識するための人格パラダイムの必要性を強調している。本書は、計算、線形代数、最適化、ネットワーク解析、確率、微分方程式など、データサイエンスで使用される幅広い数学的ツールを網羅しています。著者は、データ分析と予測のための通常および部分微分方程式にビッグデータを統合するための新しいネットワーク分析ベースのアプローチを紹介します。このアプローチは、数学やデータサイエンスの研究者や大学院生に、高度な数学的概念、特にデータ主導の微分方程式の明確な説明を提供することによってアクセス可能になります。この本には、データサイエンスに起因する例や問題が含まれており、データサイエンスにおける数学的手法の理解を深めたい人にとって優れたリソースとなっています。様々な分野でのデータサイエンスの利用が増加しているため、この本は、この分野の最新の開発を最新の状態に保ちたい人にとって必読です。はじめに:今日の世界では、テクノロジーは私たちの日常生活の不可欠な部分となっています。

You may also be interested in:

Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
Humanizing Big Data: Marketing at the Meeting of Data, Social Science and Consumer Insight
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Effective Data Science Infrastructure How to make data scientists productive (MEAP Version 7)
Data Science in Chemistry: Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter
Computer Science in Sport Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, Early Release
Data Science From Scratch From Data Visualization To Manipulation. It Is The Easy Way! All You Need For Business Using The Basic Principles Of Python And Beyond
Computer Science in Sport: Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Computer Science in Sport Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Data Smart: Using Data Science, 2nd Ed. Jordan Goldmeier
Data Science and Big Data Analytics in Smart Environments
Advances in Data Science Symbolic, Complex, and Network Data
Research Methods for Creating and Curating Data in the Digital Humanities (Research Methods for the Arts and Humanities)
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Beginning Mathematica and Wolfram for Data Science: Applications in Data Analysis, Machine Learning, and Neural Networks
Nonlinear Dispersive Equations: Inverse Scattering and PDE Methods (Applied Mathematical Sciences Book 209)
Mathematical Foundations of Big Data Analytics
Data Science in Chemistry Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter (De Gruyter Textbook)
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Essential Math for Data Science Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics (Third Early Release)
Python Data Science The Ultimate Crash Course, Tips, and Tricks to Learn Data Analytics, Machine Learning, and Their Application
Data Science with Python From Data Wrangling to Visualization
Data Science Fundamentals with R, Python, and Open Data
Data Engineering and Data Science: Concepts and Applications
Data Science Fundamentals with R, Python, and Open Data
Data Science Fundamentals with R, Python, and Open Data
Data Science and Data Analytics Opportunities and Challenges
Probability and statistics for data science math + R + data
Data Engineering and Data Science Concepts and Applications
R Programming for Data Science A comprehensive guide to R programming for Data Science
R Programming for Data Science A comprehensive guide to R programming for Data Science
Handbook of Mathematical Science Communication (World Scientific on Science Communication, 3)
Practical Data Analytics for BFSI Leveraging Data Science for Driving Decisions in Banking, Financial Services, and Insurance Operations
Advanced Data Science and Analytics with Python (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
Mathematical Analysis for Machine Learning and Data Mining
Data Science An Emerging Trend in Engineering, Science & Technology
Data Science An Emerging Trend in Engineering, Science & Technology