BOOKS - SCIENCE AND STUDY - Combinatorial Inference in Geometric Data Analysis
Combinatorial Inference in Geometric Data Analysis - Brigitte Le Roux, Solene Bienaise, Jean-Luc Durand 2019 PDF CRC Press BOOKS SCIENCE AND STUDY
ECO~14 kg CO²

1 TON

Views
68406

Telegram
 
Combinatorial Inference in Geometric Data Analysis
Author: Brigitte Le Roux, Solene Bienaise, Jean-Luc Durand
Year: 2019
Pages: 269
Format: PDF
File size: 10,42 MB
Language: ENG



Pay with Telegram STARS
Book Description: Combinatorial Inference in Geometric Data Analysis Author: Brigitte Le Roux, Solene Bienaise, Jean-Luc Durand 2019 269 CRC Press Summary: Combinatorial Inference in Geometric Data Analysis provides an overview of multidimensional statistical inference methods applicable to clouds of points that do not assume any knowledge of the data-generating process or distribution and are not based on random modeling but rather on permutation procedures recasting in a combinatorial framework. This book focuses on the need to study and understand the technological evolution process, the need for a personal paradigm for perceiving the technological development of modern knowledge as the basis for human survival and unity in a warring state. The text begins with an introduction to geometric data analysis, which is a set of observations that can be conceptualized as a Euclidean cloud of points. The author explains how this approach differs from traditional statistics and highlights its advantages in handling complex data sets. The book then delves into the principles of combinatorial inference, discussing various techniques such as the nearest neighbor algorithm and the k-d tree algorithm.
Комбинаторный вывод в анализе геометрических данных Автор: Брижит Ле Ру, Солен Бьенез, Жан-Люк Дюран 2019 269 CRC Резюме прессы: Комбинаторный вывод в анализе геометрических данных обеспечивает обзор многомерных статистических методов вывода, применимых к облакам точек, которые не предполагают каких-либо знаний о процессе или распределении генерации данных и основаны не на случайном моделировании, а скорее на процедурах перестановки, изменяющихся в комбинаторной структуре. Эта книга посвящена необходимости изучения и понимания процесса технологической эволюции, необходимости личностной парадигмы восприятия технологического развития современных знаний как основы выживания человека и единства в воюющем государстве. Текст начинается с введения в анализ геометрических данных, который представляет собой набор наблюдений, которые могут быть концептуализированы как евклидово облако точек. Автор объясняет, чем этот подход отличается от традиционной статистики, и подчеркивает его преимущества в работе со сложными наборами данных. Затем книга углубляется в принципы комбинаторного вывода, обсуждая различные техники, такие как алгоритм ближайшего соседа и алгоритм k-d дерева.
Uscita combinata nell'analisi dei dati geometrici Autore: Brigitte Roux, Solain Bienez, Jean-Luc Duran 2019 269 CRC Riepilogo stampa: L'output di combinazione nell'analisi dei dati geometrici fornisce una panoramica dei metodi di output statistici multi-dimensioni applicabili alle nuvole dei punti che non prevedono alcuna conoscenza del processo o della distribuzione della generazione dei dati e che non si basano su simulazioni casuali, ma piuttosto su procedure di riposizionamento che cambiano nella struttura di combinazione. Questo libro è dedicato alla necessità di studiare e comprendere il processo di evoluzione tecnologica, la necessità di un paradigma personale di percezione dello sviluppo tecnologico delle conoscenze moderne come base della sopravvivenza dell'uomo e dell'unità in uno stato in guerra. Il testo inizia con l'introduzione di dati geometrici nell'analisi, che è un insieme di osservazioni che possono essere concettualizzate come una nuvola di punti euclidico. L'autore spiega come questo approccio sia diverso dalle statistiche tradizionali e evidenzia i suoi vantaggi nel gestire insiemi di dati complessi. Poi il libro approfondisce i principi di output combinatore, discutendo diverse tecniche, come l'algoritmo del vicino più vicino e l'algoritmo k-d albero.
''
幾何学的データ分析における組み合わせ推論Brigitte Roux、 Solene Bienez、 Jean-Luc Durand 2019 269 CRCプレス要約: 幾何学的データ解析における組合せ推論は、データ生成のプロセスまたは分布の知識を仮定せず、ランダムモデリングに基づいているのではなく、組み合わせ構造において変化する多変量の統計推論方法の概要を提供する。この本は、科学技術の進化の過程を研究し、理解する必要性に捧げられています。テキストは、ユークリッド点群として概念化できる一連の観測群である幾何学的データ解析の紹介から始まります。著者は、このアプローチが従来の統計とどのように異なるかを説明し、複雑なデータセットを操作する際の利点を強調しています。次に、この本は組合せ推論の原理を掘り下げ、近傍アルゴリズムやk-dツリーのアルゴリズムのような様々な手法について論じている。

You may also be interested in:

Understanding Results with Python: 100 Drills for Data Analysis and Statistical Analysis
Data Analysis in Qualitative Research: Theorizing with Abductive Analysis
Data Analysis In Microsoft Excel Guided Project - Healthcare Master Skills in Data Analysis and Excel A Healthcare Data Guided Project
Data Analysis In Microsoft Excel Guided Project - Healthcare Master Skills in Data Analysis and Excel A Healthcare Data Guided Project
Data Analysis In Microsoft Excel: Guided Project - Healthcare: Master Skills in Data Analysis and Excel: A Healthcare Data Guided Project
Key Labor Market Indicators: Analysis with Household Survey Data (Streamlined Analysis with ADePT Software)
SQL for Data Analysis Advanced Techniques for Transforming Data into Insights (Final)
Explainable Machine Learning for Geospatial Data Analysis A Data-Centric Approach
Data Mining Approaches for Big Data and Sentiment Analysis in Social Media
Data Wrangling on AWS: Clean and organize complex data for analysis
The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R
Network Security through Data Analysis From Data to Action, 2nd Edition
SQL for Data Analysis: Advanced Techniques for Transforming Data into Insights
Behavioral Data Analysis with R and Python Customer-Driven Data for Real Business Results
Univariate, Bivariate, and Multivariate Statistics Using R Quantitative Tools for Data Analysis and Data Science
Behavioral Data Analysis with R and Python: Customer-Driven Data for Real Business Results
Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython, 2nd Edition
SQL for Data Analysis Advanced Techniques for Transforming Data into Insights (Early Release)
Data Analytics for Pandemics A COVID-19 Case Study (Intelligent Signal Processing and Data Analysis)
Computer Science in Sport: Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Computer Science in Sport Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Python for Data Analysis Unlocking Insights and Driving Innovation with Powerful Data Techniques. 2 in 1 Guide
Python for Data Analysis Unlocking Insights and Driving Innovation with Powerful Data Techniques. 2 in 1 Guide
Python for Data Analysis The Ultimate Beginner|s Guide to Data Analytics, Deep Learning
Computer Science in Sport Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Python for Data Analysis: Unlocking Insights and Driving Innovation with Powerful Data Techniques. 2 in 1 Guide
Beginning Mathematica and Wolfram for Data Science: Applications in Data Analysis, Machine Learning, and Neural Networks
Good, the Bad, and the Data: Shane the Lone Ethnographer|s Basic Guide to Qualitative Data Analysis
Statistical and Machine-Learning Data Mining Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition
Avoiding Data Pitfalls How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations
Hands-on Data Analysis and Visualization with Pandas Engineer, Analyse and Visualize Data, Using Powerful Python Libraries
Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data
Supply Chain Performance Evaluation: Application of Data Envelopment Analysis (Studies in Big Data Book 122)
Statistics, Data Mining and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Ed
Data Envelopment Analysis with GAMS: A Handbook on Productivity Analysis and Performance Measurement (International Series in Operations Research and Management Science, 338)
Automated Data Analysis Using Excel (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series) Second Edition
Python for Beginners Start Right Now to Learn Computer Programming with the Best Crash Course. Improve your Skills with Machine Learning, Data Analysis and Data Science
Web Analytics Blueprint: Unleashing Data Insights for Digital Success: Unlocking the Power of Data Analysis to Drive Business Growth and Optimization
Python for Data Analysis From the Beginner to Expert Crash Course 3.0 that will Change your Life as a Digital Programmer Thanks to the Minimalism of this Manual. Deep Machine Learning and Big Data
Graph Data Science with Python and Neo4j: Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data … Enterprise Strategies (English Edition)