BOOKS - Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, v...
Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data - Ayodele Oluleye June 30, 2023 PDF  BOOKS
ECO~17 kg CO²

3 TON

Views
380554

 
Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data
Author: Ayodele Oluleye
Year: June 30, 2023
Format: PDF
File size: PDF 15 MB
Language: English



Book Description: Exploratory Data Analysis with Python Cookbook Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data In today's data-centric world, the ability to extract meaningful insights from vast amounts of data has become a valuable skill across industries. Exploratory Data Analysis (EDA) lies at the heart of this process, enabling us to comprehend, visualize, and derive valuable insights from various forms of data. This book is a comprehensive guide to EDA using the Python programming language, providing practical steps needed to effectively explore, analyze, and visualize structured and unstructured data. It offers hands-on guidance and code for concepts such as generating summary statistics, analyzing single and multiple variables, visualizing data, handling outliers, and automating the EDA process. Python is an open-source general-purpose programming language widely used in data science and data analysis due to its simplicity and versatility. It offers several libraries that can be used to clean, analyze, and visualize data.
Исследовательский анализ данных с помощью Python Cookbook Более 50 рецептов для анализа, визуализации и извлечения информации из структурированных и неструктурированных данных В современном мире, ориентированном на данные, способность извлекать значимую информацию из огромных объемов данных стала ценным навыком в разных отраслях. Исследовательский анализ данных (EDA) лежит в основе этого процесса, позволяя нам понимать, визуализировать и извлекать ценную информацию из различных форм данных. Эта книга представляет собой всеобъемлющее руководство по EDA с использованием языка программирования Python, содержащее практические шаги, необходимые для эффективного изучения, анализа и визуализации структурированных и неструктурированных данных. Он предлагает практическое руководство и код для таких концепций, как генерация сводной статистики, анализ одной и нескольких переменных, визуализация данных, обработка выбросов и автоматизация процесса EDA. Python - открытый язык программирования общего назначения, широко используемый в науке о данных и анализе данных благодаря своей простоте и универсальности. Он предлагает несколько библиотек, которые можно использовать для очистки, анализа и визуализации данных.
Analyse de données exploratoires avec Python Cookbook Plus de 50 recettes pour l'analyse, la visualisation et l'extraction d'informations à partir de données structurées et non structurées Dans le monde des données d'aujourd'hui, la capacité d'extraire des informations significatives à partir d'énormes quantités de données est devenue un savoir-faire précieux dans différents secteurs. L'analyse de données exploratoires (EDA) est au cœur de ce processus, nous permettant de comprendre, de visualiser et d'extraire des informations précieuses de différentes formes de données. Ce livre est un guide complet d'EDA utilisant le langage de programmation Python, contenant les étapes pratiques nécessaires pour étudier, analyser et visualiser efficacement les données structurées et non structurées. Il offre un guide pratique et un code pour des concepts tels que la génération de statistiques sommaires, l'analyse d'une et plusieurs variables, la visualisation des données, le traitement des émissions et l'automatisation du processus EDA. Python est un langage de programmation ouvert à usage général largement utilisé dans la science des données et l'analyse des données en raison de sa simplicité et de sa polyvalence. Il offre plusieurs bibliothèques qui peuvent être utilisées pour nettoyer, analyser et visualiser les données.
Análisis de datos con Python Cookbook Más de 50 recetas para analizar, visualizar y extraer información de datos estructurados y no estructurados En el mundo actual centrado en los datos, la capacidad de extraer información significativa de enormes cantidades de datos se ha convertido en una habilidad valiosa en diferentes industrias. análisis de datos de investigación (EDA) está en el corazón de este proceso, lo que nos permite comprender, visualizar y extraer información valiosa de diferentes formas de datos. Este libro es una guía integral de EDA utilizando el lenguaje de programación Python, que contiene los pasos prácticos necesarios para el estudio, análisis y visualización eficientes de datos estructurados y no estructurados. Ofrece una guía práctica y un código para conceptos como la generación de estadísticas resumidas, el análisis de una y más variables, la visualización de datos, el procesamiento de emisiones y la automatización del proceso EDA. Python es un lenguaje abierto de programación de propósito general, ampliamente utilizado en ciencia de datos y análisis de datos debido a su simplicidad y versatilidad. Ofrece varias bibliotecas que se pueden utilizar para limpiar, analizar y visualizar datos.
Explorative Datenanalyse mit Python Cookbook Mehr als 50 Rezepte zur Analyse, Visualisierung und Extraktion von Informationen aus strukturierten und unstrukturierten Daten In der heutigen datenzentrierten Welt ist die Fähigkeit, aussagekräftige Informationen aus riesigen Datenmengen zu extrahieren, branchenübergreifend zu einer wertvollen Fähigkeit geworden. Explorative Datenanalyse (EDA) steht im Mittelpunkt dieses Prozesses und ermöglicht es uns, wertvolle Informationen aus verschiedenen Datenformen zu verstehen, zu visualisieren und zu extrahieren. Dieses Buch ist ein umfassender itfaden für EDA mit der Programmiersprache Python, der die praktischen Schritte enthält, die erforderlich sind, um strukturierte und unstrukturierte Daten effektiv zu lernen, zu analysieren und zu visualisieren. Es bietet einen praktischen itfaden und Code für Konzepte wie die Erstellung zusammengefasster Statistiken, die Analyse einer und mehrerer Variablen, die Datenvisualisierung, die Emissionsverarbeitung und die Automatisierung des EDA-Prozesses. Python ist eine offene Allzweck-Programmiersprache, die aufgrund ihrer Einfachheit und Vielseitigkeit in der Datenwissenschaft und Datenanalyse weit verbreitet ist. Es bietet mehrere Bibliotheken, die zum Reinigen, Analysieren und Visualisieren von Daten verwendet werden können.
''
Python Cookbook ile Araştırma Veri Analizi Yapılandırılmış ve yapılandırılmamış verilerden bilgi analiz etmek, görselleştirmek ve çıkarmak için 50'den fazla tarif Günümüzün veri merkezli dünyasında, çok miktarda veriden anlamlı bilgi çıkarma yeteneği, endüstriler arasında değerli bir beceri haline gelmiştir. Keşif veri analizi (EDA), bu sürecin merkezinde yer alır ve farklı veri biçimlerinden değerli bilgileri anlamamızı, görselleştirmemizi ve çıkarmamızı sağlar. Bu kitap, Python programlama dilini kullanarak EDA'ya yönelik kapsamlı bir kılavuzdur ve yapılandırılmış ve yapılandırılmamış verileri verimli bir şekilde öğrenmek, analiz etmek ve görselleştirmek için gereken pratik adımları sağlar. Özet istatistikleri oluşturma, tek ve çoklu değişkenleri analiz etme, verileri görselleştirme, aykırı değerleri işleme ve EDA sürecini otomatikleştirme gibi kavramlar için uygulamalı rehberlik ve kod sunar. Python, basitliği ve çok yönlülüğü nedeniyle veri bilimi ve veri analizinde yaygın olarak kullanılan açık bir genel amaçlı programlama dilidir. Verileri temizlemek, analiz etmek ve görselleştirmek için kullanılabilecek çeşitli kütüphaneler sunar.
تحليل بيانات الأبحاث باستخدام كتاب طبخ بايثون أكثر من 50 وصفة لتحليل المعلومات وتصورها واستخراجها من البيانات المنظمة وغير المنظمة في عالم اليوم الذي يركز على البيانات، أصبحت القدرة على استخراج معلومات ذات مغزى من كميات هائلة من البيانات مهارة قيمة عبر الصناعات. يعد تحليل البيانات الاستكشافية (EDA) في صميم هذه العملية، مما يسمح لنا بفهم المعلومات القيمة من أشكال مختلفة من البيانات وتصورها واستخراجها. هذا الكتاب هو دليل شامل لـ EDA باستخدام لغة برمجة Python، مما يوفر الخطوات العملية اللازمة لتعلم وتحليل وتصور البيانات المنظمة وغير المنظمة بكفاءة. يقدم إرشادات عملية ورموز لمفاهيم مثل إنشاء إحصاءات موجزة، وتحليل المتغيرات الفردية والمتعددة، وتصور البيانات، والتعامل مع القيم المتطرفة، وأتمتة عملية EDA. Python هي لغة برمجة مفتوحة للأغراض العامة تستخدم على نطاق واسع في علم البيانات وتحليل البيانات بسبب بساطتها وتعدد استخداماتها. يقدم العديد من المكتبات التي يمكن استخدامها لتنظيف البيانات وتحليلها وتصورها.

You may also be interested in:

Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation
Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data
Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis (English Edition)
Python for Data Analysis A Complete Crash Course on Python for Data Science to Learn Essential Tools and Python Libraries, NumPy, Pandas, Jupyter Notebook, Analysis and Visualization
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Data Analysis Foundations with Python: Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn: A Hands-On Guide with Projects and Case Studies.
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Python for Data Analysis The Ultimate Beginner|s Guide to Learn programming in Python for Data Science with Pandas and NumPy, Master Statistical Analysis, and Visualization
Python for Data Analysis A Basic Guide for Beginners to Learn the Language of Python Programming Codes Applied to Data Analysis with Libraries Software Pandas, Numpy, and IPython
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Exploratory Data Analysis Using R
Exploratory Data Analysis with MATLAB
Think Stats Exploratory Data Analysis, 2nd Edition
Python Data Science The Bible. The Ultimate Beginner’s Guide to Learn Data Analysis, from the Basics and Essentials, to Advance Content! (Python Programming, Python Crash Course, Coding Made Easy Book
Think Stats Exploratory Data Analysis, 3rd Edition (Early Release)
Think Stats Exploratory Data Analysis, 3rd Edition (Early Release)
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Hands-On Data Analysis with Pandas Efficiently perform data collection, wrangling, analysis, and visualization using Python
PYTHON FOR DATA ANALYTICS: Mastering Python for Comprehensive Data Analysis and Insights (2023 Guide for Beginners)
PYTHON DATA ANALYTICS: Mastering Python for Effective Data Analysis and Visualization (2024 Beginner Guide)
Python for Data Science Data analysis and Deep learning with Python coding and programming
Coding with Python Python for Data Analysis and Machine Learning, Let’s Make Data Talk
Python For Data Analysis A Beginner|s Guide to Wrangling and Analyzing Data Using Python
Ultimate Python Libraries for Data Analysis and Visualization: Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, … and Statistical Analysis (English
Graph Data Science with Python and Neo4j: Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data … Enterprise Strategies (English Edition)
Ultimate Python Libraries for Data Analysis and Visualization Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, Visualization, and Statistical Analysis
Python for Data Analysis Master Deep Learning With Python And Become Great At Programming.Python For Beginners
Python For Data Analysis A Step-by-Step Guide to Pandas, NumPy, and SciPy for Data Wrangling, Analysis, and Visualization
Python for Data Science A step-by-step Python Programming Guide to Master Big Data, Analysis, Machine Learning, and Artificial Intelligence
PYTHON 2 Books in 1 Python Programming & Data Science. Master Data Analysis in Less than 7 Days and Discover the Secrets of Machine Learning with Step-by-Step Exercises
Python in Power BI Unleash the Power of Python for Dynamic Data Analysis A Comprehensive Guide to Data Visualization
Python in Power BI Unleash the Power of Python for Dynamic Data Analysis A Comprehensive Guide to Data Visualization
Graph Data Science with Python and Neo4j Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies
Graph Data Science with Python and Neo4j Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies
Python Data Science The Ultimate Handbook for Beginners on How to Explore NumPy for Numerical Data, Pandas for Data Analysis, IPython, Scikit-Learn and Tensorflow for Machine Learning and Business
Understanding Results with Python: 100 Drills for Data Analysis and Statistical Analysis
Understanding Results with Python 100 Drills for Data Analysis and Statistical Analysis
Understanding Results with Python 100 Drills for Data Analysis and Statistical Analysis