BOOKS - PROGRAMMING - Exploratory Data Analysis with MATLAB
Exploratory Data Analysis with MATLAB - Wendy L. Martinez 2018 PDF Chapman and Hall/CRC BOOKS PROGRAMMING
ECO~23 kg CO²

2 TON

Views
84293

Telegram
 
Exploratory Data Analysis with MATLAB
Author: Wendy L. Martinez
Year: 2018
Pages: 616
Format: PDF
File size: 10 MB
Language: ENG



Pay with Telegram STARS
Book Description: Exploratory Data Analysis with MATLAB Author: John M. Chinneck, Richard J. P. H. Schmid, and David A. W. M. O'Connor Publication Date: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: Science, Technology, Engineering, and Mathematics (STEM) Formats: Hardcover, Paperback, eBook Description: Exploratory Data Analysis (EDA) is an essential part of the data analysis process, providing a framework for understanding and visualizing complex data sets before making assumptions or generating hypotheses. With the increasing power of computational tools and the growth of large datasets, EDA has become even more critical for data scientists. This book provides a comprehensive introduction to EDA using MATLAB, covering both basic and advanced techniques. It includes practical examples and exercises to help readers master the methods presented. The text begins by introducing the basics of EDA, including data cleaning, data transformation, and exploratory plots. It then delves into more advanced topics such as non-parametric methods, dimensionality reduction, and time series analysis. The authors emphasize the importance of understanding the underlying statistical concepts and provide practical advice on how to use MATLAB to perform EDA.
Исследовательский анализ данных с MATLAB Автор: Джон М. Чиннек, Ричард Дж. П. Х. Шмид и Дэвид А. У. М. О'Коннор Дата публикации: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: Форматы STEM (Science, Technology, Engineering, and Mathematics): Hardcover, Paperback, eExploratory Data Analysis (EDA) является важной частью процесса анализа данных, обеспечивая основу для понимания и визуализации сложных наборов данных, прежде чем делать предположения или генерировать гипотезы. С увеличением мощности вычислительных инструментов и ростом больших наборов данных EDA стал еще более критичным для специалистов по данным. В этой книге представлено полное введение в EDA с использованием MATLAB, охватывающее как основные, так и передовые методы. Она включает практические примеры и упражнения, помогающие читателям освоить представленные методы. Текст начинается с введения основ EDA, включая очистку данных, преобразование данных и поисковые графики. Затем он углубляется в более продвинутые темы, такие как непараметрические методы, уменьшение размерности и анализ временных рядов. Авторы подчеркивают важность понимания основных статистических концепций и предоставляют практические советы о том, как использовать MATLAB для выполнения EDA.
Analyse de données exploratoires avec MATLAB Auteur : John M. Chinneck, Richard J.P. H. Schmid et David A. W. M. O'Connor Date de publication : 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: s formats STEM (Science, Technologie, Engineering, and Mathematics) : Hardcover, Paperback, eExploratory Data Analysis (EDA) constituent une partie importante du processus d'analyse des données, fournissant une base pour comprendre et visualiser des ensembles de données complexes avant de formuler des hypothèses ou de générer des hypothèses. Avec l'augmentation de la puissance des outils de calcul et la croissance de grands ensembles de données, EDA est devenu encore plus critique pour les professionnels des données. Ce livre présente une introduction complète à l'EDA à l'aide de MATLAB, couvrant à la fois les pratiques de base et les meilleures pratiques. Il comprend des exemples pratiques et des exercices pour aider les lecteurs à apprendre les méthodes présentées. texte commence par l'introduction des bases de l'EDA, y compris le nettoyage des données, la conversion des données et les graphiques de recherche. Il s'oriente ensuite vers des sujets plus avancés tels que les méthodes non paramétriques, la réduction de la dimension et l'analyse des séries temporelles. s auteurs soulignent l'importance de comprendre les concepts statistiques de base et fournissent des conseils pratiques sur la façon d'utiliser MATLAB pour réaliser l'EDA.
Análisis de datos de investigación con MATLAB Autor: John M. Chinneck, Richard J. P. H. Schmid y David A. W. M. O'Connor Fecha de publicación: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: Formatos STEM (Science, Technology, Engineering, and Mathematics): Hardcover, Paperback, eExploratory Data Analysis (EDA) es una parte importante del proceso de análisis de datos, proporcionando una base para la comprensión y visualización conjuntos de datos complejos antes de hacer suposiciones o generar hipótesis. Con el aumento de la potencia de las herramientas informáticas y el crecimiento de los grandes conjuntos de datos, EDA se ha vuelto aún más crítico para los profesionales de datos. Este libro presenta una introducción completa a la EDA utilizando MATLAB, cubriendo tanto las técnicas básicas como las avanzadas. Incluye ejemplos prácticos y ejercicios que ayudan a los lectores a dominar los métodos presentados. texto comienza con la introducción de los fundamentos de EDA, incluyendo limpieza de datos, conversión de datos y gráficos de búsqueda. Luego se profundiza en temas más avanzados como las técnicas no paramétricas, la reducción de la dimensión y el análisis de series temporales. autores subrayan la importancia de comprender los conceptos estadísticos básicos y ofrecen consejos prácticos sobre cómo utilizar MATLAB para realizar EDA.
Análise de dados com MATLAB Autor: John M. Chinneck, Richard J. H. Schmid e David A. W. M. O'Connor Data de publicação: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: Formatos STEM (Science, Technology, Engineering, and Mathematics): Hardcover, Paperback, eExploratory Data Analisis (EDA) é uma parte importante do processo de análise de dados, fornecendo uma base para a compreensão e visualização de conjuntos complexos de dados antes de sugerir ou gerar hipóteses. Com o aumento da capacidade das ferramentas de processamento e o aumento dos conjuntos de dados, o EDA tornou-se ainda mais crítico para os especialistas em dados. Este livro apresenta uma introdução completa ao EDA com MATLAB, que abrange técnicas básicas e avançadas. Ele inclui exemplos práticos e exercícios que ajudam os leitores a aprender as técnicas apresentadas. O texto começa introduzindo os fundamentos do EDA, incluindo limpeza de dados, conversão de dados e gráficos de busca. Depois, aprofundou-se em temas mais avançados, tais como métodos não-aramétricos, redução de dimensões e análise de séries de tempo. Os autores destacam a importância de entender os principais conceitos estatísticos e fornecem dicas práticas sobre como usar o MATLAB para executar o EDA.
Analisi dei dati con MATLAB Autore: John M. Chinneck, Richard J. P. H. Schmid e David A. M. O'Connor Data di pubblicazione: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: I formati STEM (Science, Technology, Engineering, and Mathematics): Hardcover, Paperback, Data Analysis (EDA) sono una parte importante del processo di analisi dei dati, fornendo una base per la comprensione e la visualizzazione di set di dati complessi prima di fare ipotesi o generare ipotesi. Con l'aumento della potenza degli strumenti di elaborazione e la crescita di grandi set di dati, EDA è diventato ancora più critico per gli esperti di dati. Questo libro fornisce un'introduzione completa all'EDA con MATLAB, che comprende sia le procedure di base che le best practice. Include esempi pratici e esercizi che aiutano i lettori a imparare i metodi presentati. Il testo inizia con l'introduzione di basi EDA, tra cui pulizia dei dati, conversione dei dati e grafica di ricerca. Poi si approfondisce su argomenti più avanzati come metodi non parametrici, riduzione della dimensione e analisi delle serie temporali. Gli autori sottolineano l'importanza di comprendere i concetti statistici di base e forniscono consigli pratici su come utilizzare MATLAB per eseguire l'EDA.
Explorative Datenanalyse mit MATLAB Autor: John M. Chinneck, Richard J. P. H. Schmid und David A. W. M. O'Connor Erscheinungsdatum: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: MINT-Formate (Science, Technology, Engineering, and Mathematics): Hardcover, Paperback, eExploratory Data Analysis (EDA) ist ein wichtiger Teil des Datenanalyseprozesses und bietet eine Grundlage für das Verständnis und die Visualisierung komplexer Datensätze, bevor Annahmen getroffen oder Hypothesen generiert werden. Mit zunehmender Rechenleistung und dem Wachstum großer Datensätze ist EDA für Datenspezialisten noch kritischer geworden. Dieses Buch bietet eine vollständige Einführung in EDA mit MATLAB und deckt sowohl grundlegende als auch fortgeschrittene Techniken ab. Es enthält praktische Beispiele und Übungen, die den sern helfen, die vorgestellten Methoden zu beherrschen. Der Text beginnt mit der Einführung der EDA-Grundlagen, einschließlich Datenbereinigung, Datenkonvertierung und Suchgrafiken. Es geht dann tiefer in fortgeschrittenere Themen wie nicht-parametrische Methoden, Dimensionsreduktion und Zeitreihenanalyse. Die Autoren betonen die Bedeutung des Verständnisses grundlegender statistischer Konzepte und geben praktische Tipps zur Verwendung von MATLAB zur Durchführung von EDA.
''
MATLAB ile Keşifsel Veri Analizi John M. Chinnek, Richard J. P. H. Schmid ve David A. W. M. O'Connor Yayın Tarihi: 2018 Sayfalar: 368 sayfalar Yayıncı: Chapman and Hall/CRC Serisi: Chapman & Hall/CRC Matematik Serisi Konular: STEM (Bilim, Teknoloji, Mühendislik ve Matematik) formatları: Ciltli, Paperback, eExploratory Data Analysis (EDA), varsayımlar yapmadan veya hipotezler üretmeden önce karmaşık veri kümelerini anlamak ve görselleştirmek için bir çerçeve sağlayan veri analizi sürecinin önemli bir parçasıdır. Hesaplama araçlarının artan gücü ve büyük veri kümelerinin büyümesiyle, EDA veri bilimcileri için daha da kritik hale geldi. Bu kitap, MATLAB kullanarak EDA'ya hem temel hem de en iyi uygulamaları kapsayan eksiksiz bir giriş sunmaktadır. Okuyucuların sunulan yöntemleri öğrenmelerine yardımcı olacak pratik örnekler ve alıştırmalar içerir. Metin, veri temizleme, veri dönüşümü ve arama grafikleri dahil olmak üzere EDA'nın temellerini tanıtarak başlar. Daha sonra parametrik olmayan yöntemler, boyutsallık azaltma ve zaman serisi analizi gibi daha ileri konulara girer. Yazarlar, temel istatistiksel kavramları anlamanın önemini vurgulamakta ve EDA'yı gerçekleştirmek için MATLAB'ın nasıl kullanılacağı konusunda pratik tavsiyeler sunmaktadır.
تحليل البيانات الاستكشافية مع MATLAB بقلم جون إم تشينيك وريتشارد جيه بي إتش شميد وديفيد إيه دبليو إم أوكونور تاريخ النشر: 2018 الصفحات: 368 صفحة الناشر: Chapman and Hall/CRC Series: Chapman & Hall/CRC سلسلة الرياضيات الموضوعات: تنسيقات STEM (العلوم والتكنولوجيا والهندسة والرياضيات): الغلاف المقوى، الغلاف الورقي، تحليل البيانات الاستكشافية الإلكترونية (EDA) هو جزء مهم من عملية تحليل البيانات، ويوفر إطارًا لفهم وتصور مجموعات البيانات المعقدة قبل وضع الافتراضات أو توليد الفرضيات. مع القوة المتزايدة لأدوات الحوسبة ونمو مجموعات البيانات الكبيرة، أصبحت EDA أكثر أهمية لعلماء البيانات. يقدم هذا الكتاب مقدمة كاملة لـ EDA باستخدام MATLAB، والتي تغطي كلا من الممارسات الأساسية وأفضل الممارسات. يتضمن أمثلة عملية وتمارين لمساعدة القراء على إتقان الأساليب المقدمة. يبدأ النص بتقديم أساسيات EDA، بما في ذلك تنقية البيانات وتحويل البيانات ورسوم البحث. ثم يتعمق في موضوعات أكثر تقدمًا مثل الأساليب غير القياسية وتقليل الأبعاد وتحليل السلاسل الزمنية. يؤكد المؤلفون على أهمية فهم المفاهيم الإحصائية الأساسية وتقديم المشورة العملية حول كيفية استخدام MATLAB لأداء EDA.

You may also be interested in:

Exploratory Data Analysis with MATLAB
Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation
Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis (English Edition)
Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data
Exploratory Data Analysis Using R
Think Stats Exploratory Data Analysis, 2nd Edition
Think Stats Exploratory Data Analysis, 3rd Edition (Early Release)
Think Stats Exploratory Data Analysis, 3rd Edition (Early Release)
Engineering Data Analysis with MATLAB
Environmental Data Analysis with MatLab, 2nd Edition
Geophysical Data Analysis and Inverse Theory with MATLAB(R) and Python
Environmental Data Analysis with MatLab or Python Principles, Applications, and Prospects
Geophysical Data Analysis and Inverse Theory with MATLAB and Python, 5th Edition
Geophysical Data Analysis and Inverse Theory with MATLAB and Python, 5th Edition
MATLAB Programming Advanced Data Analysis, Visualisation, and Large-Scale Applications for Research and Development
MATLAB Programming Advanced Data Analysis, Visualisation, and Large-Scale Applications for Research and Development
Intelligent Reliability Analysis Using MATLAB and AI Perform Failure Analysis and Reliability Engineering using MATLAB and Artificial Intelligence
Data analysis & programming with R, MATLAB, SPSS & EXCEL
Exploratory Multivariate Analysis by Example Using R, 2nd Edition
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Hands-On Data Analysis with Pandas Efficiently perform data collection, wrangling, analysis, and visualization using Python
Ultimate Python Libraries for Data Analysis and Visualization: Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, … and Statistical Analysis (English
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Data Analysis Foundations with Python: Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn: A Hands-On Guide with Projects and Case Studies.
Python for Data Analysis The Ultimate Beginner|s Guide to Learn programming in Python for Data Science with Pandas and NumPy, Master Statistical Analysis, and Visualization
Python for Data Analysis A Basic Guide for Beginners to Learn the Language of Python Programming Codes Applied to Data Analysis with Libraries Software Pandas, Numpy, and IPython
Ultimate Python Libraries for Data Analysis and Visualization Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, Visualization, and Statistical Analysis
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Python For Data Analysis A Step-by-Step Guide to Pandas, NumPy, and SciPy for Data Wrangling, Analysis, and Visualization
Python for Data Analysis A Complete Crash Course on Python for Data Science to Learn Essential Tools and Python Libraries, NumPy, Pandas, Jupyter Notebook, Analysis and Visualization
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust: A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization and More