BOOKS - Big Data and Analytics The key concepts and practical applications of Big Dat...
Big Data and Analytics The key concepts and practical applications of Big Data analytics - Jugnesh Kumar, Anubhav Kumar, Rinku Kumar 2024 PDF | EPUB | MOBI BPB Publications BOOKS
ECO~18 kg CO²

1 TON

Views
96865

Telegram
 
Big Data and Analytics The key concepts and practical applications of Big Data analytics
Author: Jugnesh Kumar, Anubhav Kumar, Rinku Kumar
Year: 2024
Pages: 467
Format: PDF | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Big Data and Analytics: The Key Concepts and Practical Applications of Big Data Analytics In today's world, data is being generated at an unprecedented rate, and businesses and organizations are struggling to make sense of it all. This is where big data and analytics come into play. Big data refers to the vast amounts of structured and unstructured data that organizations collect and store, and analytics refers to the process of examining this data to gain insights and make informed decisions. In this article, we will explore the key concepts and practical applications of big data analytics, and why it is essential for businesses and organizations to understand and utilize this technology. The Evolution of Technology To understand big data and analytics, it is important to first understand the evolution of technology. From the early days of computing to the current era of artificial intelligence and machine learning, technology has advanced at an incredible pace. With each new innovation, the amount of data generated has increased exponentially. This has led to an explosion of data, making it difficult for organizations to manage and analyze. As a result, big data and analytics have emerged as a solution to help organizations make sense of this data and gain valuable insights.
Большие данные и аналитика: ключевые концепции и практические применения аналитики больших данных В современном мире данные генерируются с беспрецедентной скоростью, и предприятия и организации изо всех сил пытаются разобраться во всем этом. Здесь в игру вступают большие данные и аналитика. Большие данные относятся к огромным объемам структурированных и неструктурированных данных, которые организации собирают и хранят, а аналитика относится к процессу изучения этих данных для получения аналитической информации и принятия обоснованных решений. В этой статье мы рассмотрим ключевые концепции и практические применения аналитики больших данных, а также объясним, почему компаниям и организациям необходимо понимать и использовать эту технологию. Эволюция технологий Для понимания больших данных и аналитики важно сначала понять эволюцию технологий. С первых дней вычислений до нынешней эры искусственного интеллекта и машинного обучения технологии развивались невероятными темпами. С каждым новым нововведением количество генерируемых данных увеличивалось в геометрической прогрессии. Это привело к взрыву данных, что затрудняет управление и анализ для организаций. В результате большие данные и аналитика стали решением, помогающим организациям осмыслить эти данные и получить ценную информацию.
Big Data and Analytics : concepts clés et applications pratiques de l'analyse Big Data Dans le monde d'aujourd'hui, les données sont générées à une vitesse sans précédent et les entreprises et les organisations ont du mal à comprendre tout cela. C'est là que le big data et l'analyse entrent en jeu. s données volumineuses se rapportent à d'énormes quantités de données structurées et non structurées que les organisations collectent et stockent, et l'analyse se rapporte au processus d'examen de ces données pour obtenir des informations analytiques et prendre des décisions éclairées. Dans cet article, nous allons discuter des concepts clés et des applications pratiques de l'analyse Big Data, et expliquer pourquoi les entreprises et les organisations doivent comprendre et utiliser cette technologie. Évolution des technologies Pour comprendre le big data et l'analyse, il est important de comprendre d'abord l'évolution des technologies. Depuis les premiers jours de l'informatique jusqu'à l'ère actuelle de l'intelligence artificielle et de l'apprentissage automatique, la technologie a évolué à un rythme incroyable. Avec chaque nouvelle innovation, le nombre de données générées a augmenté de façon exponentielle. Cela a entraîné une explosion des données, ce qui rend la gestion et l'analyse difficiles pour les organisations. En conséquence, le big data et l'analyse sont devenus une solution pour aider les organisations à comprendre ces données et à obtenir des informations précieuses.
Big Data and Analytics: conceptos clave y aplicaciones prácticas del análisis de big data En el mundo actual, los datos se generan a una velocidad sin precedentes y las empresas y organizaciones luchan por entender todo esto. Aquí entran en juego el big data y la analítica. Big Data se refiere a las enormes cantidades de datos estructurados y no estructurados que las organizaciones recopilan y almacenan, y la analítica se refiere al proceso de examinar estos datos para obtener información analítica y tomar decisiones informadas. En este artículo examinaremos conceptos clave y aplicaciones prácticas del análisis de big data, y explicaremos por qué las empresas y organizaciones necesitan entender y utilizar esta tecnología. Evolución de la tecnología Para entender el big data y la analítica es importante comprender primero la evolución de la tecnología. Desde los primeros días de la computación hasta la era actual de la inteligencia artificial y el aprendizaje automático, la tecnología ha evolucionado a un ritmo increíble. Con cada nueva innovación, el número de datos generados aumentó exponencialmente. Esto ha provocado una explosión de datos, lo que dificulta la gestión y el análisis para las organizaciones. Como resultado, Big Data y Analytics se han convertido en una solución para ayudar a las organizaciones a comprender estos datos y obtener información valiosa.
Big Data e analisi: concetti chiave e applicazioni pratiche di analisi dei big data Nel mondo attuale, i dati vengono generati a una velocità senza precedenti e le aziende e le organizzazioni stanno cercando di capire tutto. Qui entrano in gioco i big data e gli analisti. I dati di grandi dimensioni si riferiscono alle enormi quantità di dati strutturati e non strutturati che le organizzazioni raccolgono e memorizzano, mentre gli analisti si riferiscono al processo di analisi di questi dati per ottenere informazioni analitiche e prendere decisioni ragionevoli. In questo articolo esamineremo i concetti chiave e le applicazioni pratiche degli analisti di big data e spiegheremo perché aziende e organizzazioni devono comprendere e utilizzare questa tecnologia. Evoluzione della tecnologia Per comprendere i grandi dati e gli analisti è importante prima comprendere l'evoluzione della tecnologia. Dai primi giorni di calcolo all'era attuale dell'intelligenza artificiale e dell'apprendimento automatico, la tecnologia si è evoluta a un ritmo incredibile. Con ogni nuova innovazione, il numero di dati generati è aumentato esponenzialmente. Ciò ha causato un'esplosione dei dati che rende difficile la gestione e l'analisi delle organizzazioni. Di conseguenza, i grandi dati e gli analisti sono stati la soluzione per aiutare le organizzazioni a comprendere questi dati e ottenere informazioni preziose.
Big Data und Analytics: Schlüsselkonzepte und praktische Anwendungen von Big Data Analytics In der heutigen Welt werden Daten mit beispielloser Geschwindigkeit generiert, und Unternehmen und Organisationen haben Schwierigkeiten, all dies zu verstehen. Hier kommen Big Data und Analytics ins Spiel. Big Data bezieht sich auf die riesigen Mengen an strukturierten und unstrukturierten Daten, die Unternehmen sammeln und speichern, und Analytics bezieht sich auf den Prozess, diese Daten zu untersuchen, um Erkenntnisse zu gewinnen und fundierte Entscheidungen zu treffen. In diesem Artikel werfen wir einen Blick auf die wichtigsten Konzepte und praktischen Anwendungen von Big Data Analytics und erklären, warum Unternehmen und Organisationen diese Technologie verstehen und nutzen müssen. Technologieentwicklung Um Big Data und Analysen zu verstehen, ist es wichtig, zuerst die Technologieentwicklung zu verstehen. Von den Anfängen des Computing bis zur heutigen Ära der künstlichen Intelligenz und des maschinellen rnens hat sich die Technologie in einem unglaublichen Tempo entwickelt. Mit jeder neuen Innovation stieg die Menge der erzeugten Daten exponentiell an. Dies hat zu einer Datenexplosion geführt, die die Verwaltung und Analyse für Unternehmen erschwert. Infolgedessen sind Big Data und Analysen zu einer Lösung geworden, die Unternehmen dabei hilft, diese Daten zu verstehen und wertvolle Erkenntnisse zu gewinnen.
''
Büyük Veri ve Analitik: Büyük Veri Analitiğinin Temel Kavramları ve Pratik Uygulamaları Günümüz dünyasında, veriler benzeri görülmemiş bir oranda üretiliyor ve işletmeler ve kuruluşlar hepsini anlamaya çalışıyorlar. Büyük veri ve analitiğin devreye girdiği yer burasıdır. Büyük veri, kuruluşların topladığı ve sakladığı çok miktarda yapılandırılmış ve yapılandırılmamış veriyi ifade eder ve analitik, bu verileri içgörüler ve bilinçli kararlar için inceleme sürecini ifade eder. Bu makalede, büyük veri analitiğinin temel kavramlarına ve pratik uygulamalarına bakıyoruz ve şirketlerin ve kuruluşların neden bu teknolojiyi anlamaları ve kullanmaları gerektiğini açıklıyoruz. Teknolojinin Evrimi Büyük veri ve analitiği anlamak için öncelikle teknolojinin evrimini anlamak önemlidir. Bilişimin ilk günlerinden şu anki yapay zeka ve makine öğrenimi çağına kadar, teknoloji inanılmaz bir hızla gelişti. Her yeni inovasyonda, üretilen veri miktarı katlanarak arttı. Bu, veri patlamasına yol açarak kuruluşların yönetmesini ve analiz etmesini zorlaştırdı. Sonuç olarak, büyük veri ve analitik, kuruluşların bu verileri anlamalarına ve değerli bilgiler edinmelerine yardımcı olacak bir çözüm haline gelmiştir.
大數據和分析:大數據分析的關鍵概念和實際應用在當今世界,數據以前所未有的速度生成,企業和組織都在努力弄清楚這一切。在這裏,大數據和分析開始發揮作用。大數據是指組織收集和存儲的大量結構化和非結構化數據,分析是指研究這些數據以獲取分析信息和做出明智決策的過程。本文將探討大數據分析的關鍵概念和實際應用,並解釋為什麼企業和組織需要了解和使用此技術。為了了解大數據和分析,首先了解技術的演變非常重要。從計算到現在的人工智能和機器學習時代,技術的發展速度令人難以置信。隨著每項新的創新,生成的數據數量成倍增加。這導致數據爆炸,使組織難以管理和分析。結果,大數據和分析成為幫助組織理解這些數據並獲得有價值信息的解決方案。

You may also be interested in:

Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Analytics Series) 1st Edition - Fiunal
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
Harness the Power of Big Data The IBM Big Data Platform
The Data Revolution Big Data, Open Data, Data Infrastructures and Their Consequences
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Applications of Emerging Technologies and AI ML Algorithms: International Conference on Data Analytics in Public Procurement and Supply Chain (ICDAPS2022) (Asset Analytics)
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Data Modeling Made Simple with Embarcadero ER/Studio Data Architect Adapting to Agile Data Modeling in a Big Data World
Data Analytics and AI (Data Analytics Applications)
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security
IBM Cloud Pak for Data: An enterprise platform to operationalize data, analytics, and AI
Real-Time Data Analytics for Large Scale Sensor Data Volume Six
Data Pipelines Pocket Reference Moving and Processing Data for Analytics (Final)
Data Analytics for Absolute Beginners A Deconstructed Guide to Data Literacy, Second Edition
Multi-dimensional Urban Sensing Using Crowdsensing Data (Data Analytics)
Agile Data Science Building Data Analytics Applications with Hadoop
Tableau for Salesforce Visualise data and generate insights with the leading platforms for data analytics
Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
Tableau for Salesforce Visualise data and generate insights with the leading platforms for data analytics
Hands on Azure Data Studio Microsoft|s Open Platform for Data Engineering and Analytics
Data Analytics for Pandemics A COVID-19 Case Study (Intelligent Signal Processing and Data Analysis)
Python for Data Analysis The Ultimate Beginner|s Guide to Data Analytics, Deep Learning
Data Just Right Introduction to Large-Scale Data & Analytics
Data Analytics for Organisational Development: Unleashing the Potential of Your Data
The Big Data Agenda Data Ethics and Critical Data Studies
Tableau for Salesforce: Visualise data and generate insights with the leading platforms for data analytics (English Edition)
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Proceedings of Data Analytics and Management: ICDAM 2021, Volume 1 (Lecture Notes on Data Engineering and Communications Technologies, 90)
Python Data Science The Ultimate Crash Course, Tips, and Tricks to Learn Data Analytics, Machine Learning, and Their Application
Qlik Sense: Advanced Data Visualization for Your Organization: Create smart data visualizations and predictive analytics solutions
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Data Science and Data Analytics Opportunities and Challenges
Data Analytics with Google Cloud Platform Build Real Time Data Analytics on Google Cloud Platform
Advanced Data Science and Analytics with Python (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
Practical Data Analytics for BFSI Leveraging Data Science for Driving Decisions in Banking, Financial Services, and Insurance Operations
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Web Analytics Blueprint: Unleashing Data Insights for Digital Success: Unlocking the Power of Data Analysis to Drive Business Growth and Optimization
Be Data Analytical: How to Use Analytics to Turn Data into Value