BOOKS - Probability and Statistics for Machine Learning A Textbook
Probability and Statistics for Machine Learning A Textbook - Charu C. Aggarwal 2024 PDF | EPUB Springer BOOKS
ECO~19 kg CO²

2 TON

Views
6903

Telegram
 
Probability and Statistics for Machine Learning A Textbook
Author: Charu C. Aggarwal
Year: 2024
Pages: 530
Format: PDF | EPUB
File size: 41.5 MB
Language: ENG



Pay with Telegram STARS
The book "Probability and Statistics for Machine Learning A Textbook" by Dustin Trani, et al. , is a comprehensive guide to understanding the fundamental concepts of probability and statistics in machine learning. The book covers a wide range of topics, from basic concepts such as probability distributions and statistical inference to more advanced topics like Bayesian inference and deep learning. The authors emphasize the importance of understanding these concepts in order to develop a personal paradigm for perceiving the technological process of developing modern knowledge, which they argue is essential for the survival of humanity and the unity of people in a warring state. The book begins by introducing the reader to the basics of probability theory, including the concept of probability spaces and events, and the laws of probability. It then delves into more advanced topics such as conditional probability, Bayes' theorem, and Markov chains. The authors also cover statistical inference, including hypothesis testing and confidence intervals. They provide a detailed explanation of the different types of statistical tests and their applications in machine learning. One of the unique aspects of this book is its focus on the practical application of probability and statistics in machine learning. The authors use real-world examples to illustrate how these concepts are used in industry and research. For example, they discuss the use of Gaussian processes in robotics and the application of Markov chain Monte Carlo (MCMC) methods in bioinformatics. They also provide code examples using Python and R, making it accessible to readers who are new to the field. The book also covers more advanced topics such as deep learning, which is a subset of machine learning that uses neural networks to analyze data. The authors explain how deep learning models can be used for tasks such as image recognition and natural language processing.
Книга «Probability and Statistics for Machine arning A Textbook» Дастина Трани (Dustin Trani) и др. представляет собой всеобъемлющее руководство по пониманию фундаментальных понятий вероятности и статистики в машинном обучении. Книга охватывает широкий спектр тем, от базовых понятий, таких как распределение вероятностей и статистический вывод, до более продвинутых тем, таких как байесовский вывод и глубокое обучение. Авторы подчеркивают важность понимания этих понятий, чтобы выработать личностную парадигму восприятия технологического процесса развития современных знаний, которые, как они утверждают, необходимы для выживания человечества и единства людей в воюющем государстве. Книга начинается с ознакомления читателя с основами теории вероятностей, включая понятие вероятностных пространств и событий, и законами вероятности. Затем он углубляется в более продвинутые темы, такие как условная вероятность, теорема Байеса и цепи Маркова. Авторы также охватывают статистический вывод, включая проверку гипотез и доверительные интервалы. Они дают подробное объяснение различных типов статистических тестов и их применения в машинном обучении. Одним из уникальных аспектов этой книги является её направленность на практическое применение вероятности и статистики в машинном обучении. Авторы используют реальные примеры, чтобы проиллюстрировать, как эти концепции используются в промышленности и исследованиях. Например, они обсуждают использование гауссовых процессов в робототехнике и применение методов марковской цепи Монте-Карло (MCMC) в биоинформатике. Они также предоставляют примеры кода с использованием Python и R, делая его доступным для читателей, которые являются новичками в этой области. Книга также охватывает более продвинутые темы, такие как глубокое обучение, которое представляет собой подмножество машинного обучения, использующее нейронные сети для анализа данных. Авторы объясняют, как можно использовать модели глубокого обучения для таких задач, как распознавание изображений и обработка естественного языка.
''

You may also be interested in:

Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Chance and Stability: Stable Distributions and Their Applications (Modern Probability and Statistics)
Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy, 1)
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Machine Learning for Beginners An Introduction to Artificial Intelligence and Machine Learning
Machine Learning Interviews: Kickstart Your Machine Learning and Data Career
Practical Machine Learning with R and Python Machine Learning in Stereo, Third Edition
Miller & Freund|s Probability and Statistics for Engineers, Ninth Edition
Moment-sos Hierarchy, The Lectures In Probability, Statistics, Computational Geometry, Control
Essential Math for AI Exploring Linear Algebra, Probability and Statistics, Calculus, Optimization Techniques, and More
Essential Math for AI Exploring Linear Algebra, Probability and Statistics, Calculus, Optimization Techniques, and More
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Unsupervised Machine Learning in Python Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Periodically Correlated Random Sequences: Spectral Theory and Practice (Wiley Series in Probability and Statistics)
Statistical Intervals A Guide for Practitioners and Researchers (Wiley Series in Probability and Statistics) 2nd Edition
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R