BOOKS - Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner...
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner
ECO~12 kg CO²

1 TON

Views
10426

Telegram
 
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner's Guide to Machine Learning with Python
Author: Daniel Garfield
Year: 2024
Pages: 148
Format: PDF | AZW3 | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The book "Python Machine Learning for Beginners Unlocking the Power of Data" is a comprehensive guide to machine learning using Python programming language. The book covers all aspects of machine learning, from basic concepts to advanced techniques, providing readers with a solid foundation in this field. It begins by introducing the basics of machine learning, including supervised and unsupervised learning, and then delves into more complex topics such as neural networks, deep learning, and natural language processing. The book is divided into four parts: Part 1: Introduction to Machine Learning, Part 2: Supervised Learning, Part 3: Unsupervised Learning, and Part 4: Advanced Topics. Each part builds upon the previous one, allowing readers to gradually increase their knowledge and understanding of machine learning. In Part 1, the author provides an overview of machine learning, discussing its history, applications, and the importance of data preprocessing. This section also covers the different types of machine learning algorithms, including linear regression, logistic regression, decision trees, random forests, support vector machines, and clustering. Part 2 focuses on supervised learning, which involves training models on labeled data to make predictions on new data. The author explains how to implement common algorithms such as linear regression, logistic regression, and support vector machines using Python libraries like scikit-learn and TensorFlow. Part 3 explores unsupervised learning, which involves discovering patterns in data without any prior knowledge of the outcome. Techniques covered in this section include k-means clustering, hierarchical clustering, and principal component analysis.
Книга «Python Machine arning for Beginners Unlocking the Power of Data» является всеобъемлющим руководством по машинному обучению с использованием языка программирования Python. Книга охватывает все аспекты машинного обучения, от базовых концепций до передовых техник, предоставляя читателям прочную основу в этой области. Он начинается с введения основ машинного обучения, включая обучение с учителем и без учителя, а затем углубляется в более сложные темы, такие как нейронные сети, глубокое обучение и обработка естественного языка. Книга состоит из четырех частей: Часть 1: Введение в машинное обучение, Часть 2: Обучение с учителем, Часть 3: Обучение без учителя и Часть 4: Дополнительные темы. Каждая часть опирается на предыдущую, позволяя читателям постепенно расширять свои знания и понимание машинного обучения. В части 1 автор представляет обзор машинного обучения, обсуждая его историю, приложения и важность предварительной обработки данных. Этот раздел также охватывает различные типы алгоритмов машинного обучения, включая линейную регрессию, логистическую регрессию, деревья решений, случайные леса, машины опорных векторов и кластеризацию. Часть 2 посвящена обучению с учителем, которое включает в себя обучение моделей на помеченных данных, чтобы делать прогнозы на новых данных. Автор объясняет, как реализовать общие алгоритмы, такие как линейная регрессия, логистическая регрессия и машины опорных векторов, используя библиотеки Python, такие как scikit-learn и TensorFlow. Часть 3 исследует неконтролируемое обучение, которое включает обнаружение закономерностей в данных без каких-либо предварительных знаний о результате. Методы, рассматриваемые в этом разделе, включают кластеризацию k-средних, иерархическую кластеризацию и анализ главных компонентов.
livre « Python Machine Arning for Beginners Unlocking the Power of Data » est un guide complet sur l'apprentissage automatique utilisant le langage de programmation Python. livre couvre tous les aspects de l'apprentissage automatique, des concepts de base aux techniques de pointe, offrant aux lecteurs une base solide dans ce domaine. Il commence par introduire les bases de l'apprentissage automatique, y compris l'apprentissage avec et sans professeur, puis s'approfondit dans des sujets plus complexes tels que les réseaux neuronaux, l'apprentissage profond et le traitement du langage naturel. livre se compose de quatre parties : Partie 1 : Introduction à l'apprentissage automatique, Partie 2 : Apprentissage avec le professeur, Partie 3 : Enseignement sans professeur et Partie 4 : Sujets supplémentaires. Chaque partie s'appuie sur la précédente, permettant aux lecteurs d'élargir progressivement leurs connaissances et leur compréhension de l'apprentissage automatique. Dans la partie 1, l'auteur présente un aperçu de l'apprentissage automatique, en discutant de son histoire, de ses applications et de l'importance du prétraitement des données. Cette section couvre également différents types d'algorithmes d'apprentissage automatique, y compris la régression linéaire, la régression logistique, les arbres de décision, les forêts aléatoires, les machines vectorielles de référence et le regroupement. La partie 2 est consacrée à l'apprentissage avec l'enseignant, qui comprend l'apprentissage de modèles sur des données marquées pour faire des prévisions sur de nouvelles données. L'auteur explique comment mettre en œuvre des algorithmes communs tels que la régression linéaire, la régression logistique et les machines de vecteurs de référence en utilisant des bibliothèques Python telles que scikit-learn et TensorFlow. La partie 3 explore l'apprentissage non contrôlé, qui comprend la détection de schémas dans les données sans connaissance préalable du résultat. s méthodes examinées dans cette section comprennent le regroupement des k-moyennes, le regroupement hiérarchique et l'analyse des composantes principales.
libro «Python Machine arning for Beginners Unlocking the Power of Data» es una guía integral de aprendizaje automático usando el lenguaje de programación Python. libro cubre todos los aspectos del aprendizaje automático, desde conceptos básicos hasta técnicas avanzadas, proporcionando a los lectores una base sólida en este campo. Comienza con la introducción de los fundamentos del aprendizaje automático, incluyendo el aprendizaje con y sin profesor, y luego profundiza en temas más complejos como las redes neuronales, el aprendizaje profundo y el procesamiento del lenguaje natural. libro consta de cuatro partes: Parte 1: Introducción al aprendizaje automático, Parte 2: Aprender con un profesor, Parte 3: Aprender sin un profesor y Parte 4: Temas adicionales. Cada parte se basa en la anterior, permitiendo a los lectores ampliar gradualmente su conocimiento y comprensión del aprendizaje automático. En la parte 1, el autor presenta una visión general del aprendizaje automático, discutiendo su historia, aplicaciones e importancia del pre-procesamiento de datos. Esta sección también cubre diferentes tipos de algoritmos de aprendizaje automático, incluyendo regresión lineal, regresión logística, árboles de decisión, bosques aleatorios, máquinas de vectores de referencia y agrupamiento. La parte 2 se dedica a la formación con el profesor, que incluye la formación de modelos sobre datos marcados para hacer predicciones sobre nuevos datos. autor explica cómo implementar algoritmos comunes como la regresión lineal, la regresión logística y las máquinas de vectores de referencia utilizando bibliotecas Python como Scikit-learn y TensorFlow. La Parte 3 investiga el aprendizaje incontrolado que implica la detección de patrones en los datos sin ningún conocimiento previo del resultado. métodos considerados en esta sección incluyen clustering k-middle, clustering jerárquico y análisis de componentes principales.
Il libro «Python Machine arning for Beginners Unlocking the Power of Data» è una guida completa all'apprendimento automatico con il linguaggio di programmazione Python. Il libro comprende tutti gli aspetti dell'apprendimento automatico, dai concetti di base alle tecniche avanzate, fornendo ai lettori una base solida in questo campo. Inizia con l'introduzione di basi di apprendimento automatico, compreso l'apprendimento con e senza insegnante, e poi approfondisce in temi più complessi come le reti neurali, l'apprendimento profondo e l'elaborazione del linguaggio naturale. Il libro è composto da quattro parti: Parte 1: Introduzione all'apprendimento automatico, Parte 2: Formazione con insegnante, Parte 3: Formazione senza insegnante e Parte 4: Argomenti aggiuntivi. Ogni parte si basa sulla parte precedente, permettendo ai lettori di ampliare gradualmente le loro conoscenze e la loro comprensione dell'apprendimento automatico. Nella parte 1, l'autore fornisce una panoramica sull'apprendimento automatico, discutendo della sua storia, delle sue applicazioni e dell'importanza della pre-elaborazione dei dati. Questa sezione comprende anche diversi tipi di algoritmi di apprendimento automatico, tra cui regressione lineare, regressione logistica, alberi di soluzioni, foreste casuali, macchine di supporto vettori e clustering. La parte 2 è dedicata alla formazione con un insegnante, che include la formazione di modelli su dati contrassegnati per predire i nuovi dati. L'autore spiega come implementare algoritmi comuni come la regressione lineare, la regressione logistica e le macchine dei vettori di supporto, utilizzando librerie Python come scikit-learn e TensorFlow. La parte 3 esamina l'apprendimento incontrollato che include l'individuazione di schemi nei dati senza alcuna conoscenza preliminare del risultato. I metodi descritti in questa sezione includono il clustering k-mid, il clustering gerarchico e l'analisi dei componenti principali.
Das Buch „Python Machine Arning for Beginners Unlocking the Power of Data“ ist ein umfassendes Handbuch zum maschinellen rnen mit der Programmiersprache Python. Das Buch deckt alle Aspekte des maschinellen rnens ab, von grundlegenden Konzepten bis hin zu fortgeschrittenen Techniken, und bietet den sern eine solide Grundlage in diesem Bereich. Es beginnt mit der Einführung der Grundlagen des maschinellen rnens, einschließlich des rnens mit und ohne hrer, und geht dann tiefer in komplexere Themen wie neuronale Netze, Deep arning und natürliche Sprachverarbeitung. Das Buch besteht aus vier Teilen: Teil 1: Einführung in maschinelles rnen, Teil 2: rnen mit dem hrer, Teil 3: rnen ohne den hrer und Teil 4: Zusätzliche Themen. Jeder Teil baut auf dem vorherigen auf und ermöglicht es den sern, ihr Wissen und Verständnis für maschinelles rnen schrittweise zu erweitern. In Teil 1 gibt der Autor einen Überblick über maschinelles rnen und diskutiert dessen Geschichte, Anwendungen und die Bedeutung der Datenvorverarbeitung. Dieser Abschnitt deckt auch verschiedene Arten von maschinellen rnalgorithmen ab, einschließlich linearer Regression, logistischer Regression, Entscheidungsbäumen, zufälligen Wäldern, Support-Vektormaschinen und Clustering. Teil 2 befasst sich mit dem rnen mit dem hrer, bei dem Modelle auf markierten Daten trainiert werden, um Vorhersagen über neue Daten zu treffen. Der Autor erklärt, wie man gängige Algorithmen wie lineare Regression, logistische Regression und Support-Vektormaschinen mit Python-Bibliotheken wie scikit-learn und TensorFlow implementiert. Teil 3 untersucht unkontrolliertes rnen, bei dem Muster in Daten ohne Vorkenntnisse des Ergebnisses erkannt werden. Die in diesem Abschnitt behandelten Methoden umfassen k-mid Clustering, hierarchisches Clustering und Hauptkomponentenanalyse.
Python Machine Arning for Beginners Unlocking the Power of Data הוא מדריך מקיף ללימוד מכונה באמצעות שפת התכנות פייתון. הספר מכסה את כל ההיבטים של למידת מכונה, החל במושגים בסיסיים וכלה בטכניקות מתקדמות, ומספק לקוראים בסיס מוצק בתחום. הוא מתחיל בכך שהוא מציג את היסודות של למידת מכונה, כולל למידה מפוקחת ובלתי מפוקחת, ואז מתעמק בנושאים מורכבים יותר כמו רשתות עצביות, למידה עמוקה ועיבוד שפה טבעית. הספר מורכב מארבעה חלקים: חלק 1: מבוא ללמידת מכונה, חלק 2: למידה מפוקחת, חלק 3: למידה ללא השגחה, וחלק 4: נושאים נוספים. כל חלק בונה על הקודם, ומאפשר לקוראים להרחיב בהדרגה את הידע וההבנה שלהם על למידת מכונה. בחלק 1, המחבר מציג סקירה של למידת מכונה, דן בהיסטוריה שלה, יישומים, ואת החשיבות של עיבוד נתונים מראש. סעיף זה מכסה גם סוגים שונים של אלגוריתמים ללימוד מכונה, כולל רגרסיה לינארית, רגרסיה לוגיסטית, עצי החלטה, יערות אקראיים, מכונות וקטורים תומכות, וקבצים. חלק 2 מתמקד בלמידה מפוקחת, הכרוכה בהכשרת מודלים על נתונים מתויגים כדי לחזות נתונים חדשים. המחבר מסביר כיצד ליישם אלגוריתמים נפוצים כגון רגרסיה לינארית, רגרסיה לוגיסטית, ומכונות וקטורים תומכות באמצעות ספריות פייתון כגון Scikit-arch ו-TensorFlow. חלק 3 חוקר למידה ללא השגחה, הכרוכה במציאת דפוסים בנתונים ללא כל ידע מוקדם על התוצאה. שיטות המכוסות בחלק זה כוללות קיבוצים, קיבוצים היררכיים וניתוח רכיבים עיקריים.''
Yeni Başlayanlar İçin Python Machine arning Verilerin Gücünün Kilidini Açmak, Python programlama dilini kullanarak makine öğrenimi için kapsamlı bir kılavuzdur. Kitap, temel kavramlardan ileri tekniklere kadar makine öğreniminin tüm yönlerini kapsar ve okuyuculara bu alanda sağlam bir temel sağlar. Denetimli ve denetimsiz öğrenme de dahil olmak üzere makine öğreniminin temellerini tanıtarak başlar ve daha sonra sinir ağları, derin öğrenme ve doğal dil işleme gibi daha karmaşık konulara girer. Kitap dört bölümden oluşuyor: Bölüm 1: Makine öğrenimine giriş, Bölüm 2: Denetimli öğrenme, Bölüm 3: Denetimsiz öğrenme ve Bölüm 4: Ek konular. Her bölüm bir öncekine dayanıyor ve okuyucuların makine öğrenimi konusundaki bilgilerini ve anlayışlarını kademeli olarak genişletmelerini sağlıyor. Bölüm 1'de yazar, makine öğrenimine genel bir bakış, tarihini, uygulamalarını ve veri ön işlemenin önemini tartışıyor. Bu bölüm ayrıca doğrusal regresyon, lojistik regresyon, karar ağaçları, rastgele ormanlar, destek vektör makineleri ve kümeleme gibi çeşitli makine öğrenme algoritmalarını da kapsar. Bölüm 2, yeni veriler üzerinde tahminlerde bulunmak için etiketli veriler üzerinde eğitim modellerini içeren denetimli öğrenmeye odaklanmaktadır. Yazar, doğrusal regresyon, lojistik regresyon ve destek vektör makineleri gibi ortak algoritmaların, scikit-learn ve TensorFlow gibi Python kütüphanelerini kullanarak nasıl uygulanacağını açıklar. Bölüm 3, sonuç hakkında önceden bilgi sahibi olmadan verilerdeki kalıpları bulmayı içeren denetimsiz öğrenmeyi araştırıyor. Bu bölümde ele alınan yöntemler k-means kümeleme, hiyerarşik kümeleme ve temel bileşen analizini içerir.
آلة بايثون تحريك للمبتدئين فتح قوة البيانات هو دليل شامل للتعلم الآلي باستخدام لغة برمجة بايثون. يغطي الكتاب جميع جوانب التعلم الآلي، من المفاهيم الأساسية إلى التقنيات المتقدمة، مما يوفر للقراء أساسًا صلبًا في هذا المجال. يبدأ بتقديم أساسيات التعلم الآلي، بما في ذلك التعلم الخاضع للإشراف وغير الخاضع للإشراف، ثم يتعمق في موضوعات أكثر تعقيدًا مثل الشبكات العصبية والتعلم العميق ومعالجة اللغة الطبيعية. يتكون الكتاب من أربعة أجزاء: الجزء 1: مقدمة للتعلم الآلي، الجزء 2: التعلم الخاضع للإشراف، الجزء 3: التعلم غير الخاضع للإشراف، والجزء 4: موضوعات إضافية. يعتمد كل جزء على الجزء السابق، مما يسمح للقراء بتوسيع معرفتهم وفهمهم للتعلم الآلي تدريجياً. في الجزء 1، يقدم المؤلف لمحة عامة عن التعلم الآلي، ويناقش تاريخه وتطبيقاته وأهمية المعالجة المسبقة للبيانات. يغطي هذا القسم أيضًا أنواعًا مختلفة من خوارزميات التعلم الآلي، بما في ذلك الانحدار الخطي، والانحدار اللوجستي، وأشجار القرار، والغابات العشوائية، وآلات ناقلات الدعم، والتجمع. يركز الجزء 2 على التعلم الخاضع للإشراف، والذي يتضمن نماذج تدريبية على البيانات الموسومة لإجراء تنبؤات حول البيانات الجديدة. يشرح المؤلف كيفية تنفيذ الخوارزميات الشائعة مثل الانحدار الخطي والانحدار اللوجستي وآلات ناقلات الدعم باستخدام مكتبات بايثون مثل scikit-learn و TensorFlow. يستكشف الجزء 3 التعلم غير الخاضع للإشراف، والذي يتضمن إيجاد أنماط في البيانات دون أي معرفة مسبقة بالنتيجة. تشمل الطرق التي يغطيها هذا القسم تجميع k-mean، والتجميع الهرمي، وتحليل المكونات الرئيسية.
「Python機器為初學者釋放數據力量」一書是使用Python編程語言進行機器學習的全面指南。該書涵蓋了機器學習的各個方面,從基本概念到高級技術,為讀者提供了該領域的堅實基礎。它首先介紹了機器學習的基本知識,包括與老師和沒有老師一起學習,然後深入研究更復雜的主題,例如神經網絡,深度學習和自然語言處理。該書分為四個部分:第1部分:機器學習簡介,第2部分:與老師一起學習,第3部分:沒有老師的學習和第4部分:其他主題。每個部分都依賴於以前的部分,使讀者可以逐漸擴展他們對機器學習的知識和理解。在第1部分中,作者概述了機器學習的歷史,應用和數據預處理的重要性。本節還涵蓋了各種類型的機器學習算法,包括線性回歸,邏輯回歸,決策樹,隨機森林,參考向量機器和聚類。第2部分致力於與老師一起學習,其中包括對標記數據的模型進行培訓,以對新數據進行預測。作者解釋了如何使用Python庫(例如scikit-learn和TensorFlow)實現通用算法,例如線性回歸,邏輯回歸和基準向量機。第3部分探討了無監督的學習,該學習涉及檢測數據中的模式,而無需事先了解結果。本節中討論的方法包括K平均聚類,分層聚類和主要成分分析。

You may also be interested in:

Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl
Python for Computer Vision Unlocking Image Processing and Machine Learning with Python
Python for Computer Vision Unlocking Image Processing and Machine Learning with Python
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Python - 2 Books in 1 Python and Machine Learning for Beginners The Ultimate Guide from Beginners to Expert Concepts
Python: 3 books in 1 : Python basics for Beginners + Python Automation Techniques And Web Scraping + Python For Data Science And Machine Learning
Python Programming, Deep Learning: 3 Books in 1: A Complete Guide for Beginners, Python Coding for AI, Neural Networks, and Machine Learning, Data Science Analysis … Learners (Python Programming
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Programming 3 Manuscripts Python Crash Course, Python Machine Learning and Python Data Science for Beginners
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Python Programming 2 Books in 1 Python For Beginners & Machine Learning
Python for Beginners: Comprehensive Guide to the Basics of Programming, Machine Learning, Data Science and Analysis with Python.
Python Machine Learning for Beginners Learning from Scratch Numpy, Pandas, Matplotlib, Seaborn, SKlearn and TensorFlow 2.0
PYTHON PROGRAMMING AND MACHINE LEARNING The ultimate guide for beginners to learn Python and mastering the fundamentals of ML + tools and tricks
Python Machine Learning For Beginners An introduction to neural networks and a brief overview of the processes you need to know when programming computers and coding with Python
Python for Beginners A Step by Step Guide to Python Programming, Data Science, and Predictive Model. A Practical Introduction to Machine Learning with Python
Python Highway 2 Books in 1 The Fastest Way for Beginners to Learn Python Programming, Data Science and Machine Learning in 3 Days (or less) + Practical Exercises Included
Python Programming Language For Beginners The First Real Guide For Beginners Towards Machine Learning And Artificial Intelligence. Learn How To Develop Your First Web App In Just 7 Days With Django!
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Python Machine Learning Practical Guide for Beginners
Machine Learning with Python The Ultimate Guide for Absolute Beginners with Steps to Implement Artificial Neural Networks with Real Examples (Useful Python Tools eg. Anaconda, Jupiter Notebook)
Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies