BOOKS - PROGRAMMING - The Art of Machine Learning A Hands-On Guide to Machine Learnin...
The Art of Machine Learning A Hands-On Guide to Machine Learning with R - Norman Matloff 2024 EPUB | MOBI No Starch Press BOOKS PROGRAMMING
ECO~14 kg CO²

1 TON

Views
45156

Telegram
 
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Author: Norman Matloff
Year: 2024
Pages: 272
Format: EPUB | MOBI
File size: 22.9 MB
Language: ENG



Pay with Telegram STARS
The Art of Machine Learning A HandsOn Guide to Machine Learning with R Book Description: This book provides a comprehensive introduction to machine learning using R, covering both the theory and practical implementation of various algorithms. It begins by introducing the concept of machine learning and its importance in today's world, before delving into the details of supervised and unsupervised learning, including linear regression, logistic regression, decision trees, clustering, and neural networks. The book also covers more advanced topics such as deep learning, natural language processing, and reinforcement learning. Throughout the book, the author emphasizes the importance of understanding the underlying principles of machine learning and how they can be applied to real-world problems. The book includes numerous examples and exercises to help readers understand and implement the concepts discussed. The book is divided into four parts: 1. Introduction to Machine Learning 2. Supervised Learning 3. Unsupervised Learning 4. Advanced Topics Part I: Introduction to Machine Learning Chapter 1: What is Machine Learning? In this chapter, we will explore what machine learning is, why it is important, and how it is used in various industries. We will discuss the different types of machine learning, including supervised, unsupervised, and reinforcement learning, and how they are used to solve different types of problems. Chapter 2: The History of Machine Learning This chapter provides an overview of the history of machine learning, from its early beginnings to the current state of the field.
Искусство машинного обучения Практическое руководство по машинному обучению с R В этой книге представлено всестороннее введение в машинное обучение с использованием R, охватывающее как теорию, так и практическую реализацию различных алгоритмов. Он начинается с введения концепции машинного обучения и его важности в современном мире, прежде чем углубиться в детали контролируемого и неконтролируемого обучения, включая линейную регрессию, логистическую регрессию, деревья решений, кластеризацию и нейронные сети. Книга также охватывает более продвинутые темы, такие как глубокое обучение, обработка естественного языка и обучение с подкреплением. На протяжении всей книги автор подчеркивает важность понимания основополагающих принципов машинного обучения и того, как их можно применить к реальным проблемам. Книга включает в себя многочисленные примеры и упражнения, помогающие читателям понять и реализовать обсуждаемые концепции. Книга разделена на четыре части: 1. Введение в машинное обучение 2. Обучение с учителем 3. Обучение без учителя 4. Дополнительные темы Часть I: Введение в машинное обучение Глава 1: Что такое машинное обучение? В этой главе мы рассмотрим, что такое машинное обучение, почему оно важно и как оно используется в различных отраслях. Мы обсудим различные типы машинного обучения, включая обучение с учителем, без учителя и обучение с подкреплением, а также то, как они используются для решения различных типов проблем. Глава 2: История машинного обучения В этой главе представлен обзор истории машинного обучения, от его раннего начала до текущего состояния области.
Arte dell'apprendimento automatico Manuale pratico per l'apprendimento automatico con R Questo libro presenta un'introduzione completa all'apprendimento automatico utilizzando R, che comprende sia la teoria che la realizzazione pratica di diversi algoritmi. Inizia con l'introduzione del concetto di apprendimento automatico e della sua importanza nel mondo moderno, prima di approfondire i dettagli dell'apprendimento controllato e incontrollato, tra cui la regressione lineare, la regressione logistica, gli alberi delle soluzioni, il clustering e le reti neurali. Il libro comprende anche temi più avanzati come l'apprendimento profondo, l'elaborazione del linguaggio naturale e l'apprendimento con rinforzi. Durante tutto il libro, l'autore sottolinea l'importanza di comprendere i principi fondamentali dell'apprendimento automatico e come possono essere applicati ai problemi reali. Il libro include numerosi esempi ed esercizi che aiutano i lettori a comprendere e realizzare i concetti discussi. Il libro è suddiviso in quattro parti: 1. Introduzione all'apprendimento automatico 2. Imparare con l'insegnante 3. Formazione senza insegnante 4. Argomenti aggiuntivi Parte I: Introduzione all'apprendimento automatico Capitolo 1: Cos'è l'apprendimento automatico? In questo capitolo esamineremo cos'è l'apprendimento automatico, perché è importante e come viene utilizzato in diversi settori. Discuteremo di diversi tipi di apprendimento automatico, tra cui l'apprendimento con l'insegnante, senza l'insegnante e l'apprendimento con i rinforzi, e come vengono utilizzati per risolvere diversi tipi di problemi. Capitolo 2: Storia dell'apprendimento automatico Questo capitolo fornisce una panoramica della storia dell'apprendimento automatico, dal suo inizio precoce allo stato attuale dell'area.
''
機械学習の技術Rによる機械学習の実践ガイドこの本では、Rを用いた機械学習の包括的な紹介を行い、様々なアルゴリズムの理論と実用化を網羅しています。機械学習の概念と現代世界におけるその重要性の導入から始まり、線形回帰、ロジスティック回帰、意思決定木、クラスタリング、ニューラルネットワークなど、制御された学習と監視されていない学習の詳細を掘り下げます。また、ディープラーニング、自然言語処理、強化学習など、より高度なトピックも網羅しています。本書を通して、著者は機械学習の基本原則を理解することの重要性と、それらを実際の問題にどのように適用できるかを強調しています。この本には、読者が議論された概念を理解し実装するのに役立つ多数の例と演習が含まれています。本は4つの部分に分かれています:1。機械学習の紹介2。指導された学習3。サポートされていない学習4。その他のトピックパートI:機械学習の紹介章1:機械学習とは何ですか?この章では、機械学習とは何か、なぜ重要なのか、そして産業全体でどのように使われているのかを見ていきます。指導された、監視されていない、強化された学習を含むさまざまな種類の機械学習と、それらがさまざまな種類の問題を解決するためにどのように使用されるかについて説明します。第2章:機械学習の歴史この章では、機械学習の初期段階から現場の現状までの歴史を概観します。

You may also be interested in:

Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Art in the Age of Machine Learning
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Computational Formalism: Art History and Machine Learning
The AI Playbook Mastering the Rare Art of Machine Learning Deployment
The AI Playbook Mastering the Rare Art of Machine Learning Deployment
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning Tutorial: Machine Learning Simply Easy Learning
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life