BOOKS - Starting Data Analytics with Generative AI and Python
Starting Data Analytics with Generative AI and Python - Artur Guja, Marlena Siwiak, Marian Siwiak 2025 PDF Manning Publications BOOKS
ECO~15 kg CO²

1 TON

Views
16721

Telegram
 
Starting Data Analytics with Generative AI and Python
Author: Artur Guja, Marlena Siwiak, Marian Siwiak
Year: 2025
Pages: 362
Format: PDF
File size: 15.5 MB
Language: ENG



Pay with Telegram STARS
Book Description: Starting Data Analytics with Generative AI and Python is a comprehensive guide that covers the fundamentals of data analytics using generative AI and Python programming language. The book provides readers with a solid understanding of the concepts and techniques of data analysis and their practical applications in various industries. It begins by introducing the basics of data analytics and gradually moves towards more advanced topics such as machine learning, deep learning, and neural networks. The book also explores the use of generative AI in data analytics and its potential applications in fields like image and video processing, natural language processing, and predictive modeling. The book is divided into four parts: Part 1 - Introduction to Data Analytics, Part 2 - Generative AI and Python Programming, Part 3 - Advanced Topics in Data Analytics, and Part 4 - Case Studies and Applications. Each part builds upon the previous one, providing a thorough understanding of the subject matter. The book concludes with a discussion on the future of data analytics and its potential impact on society. Throughout the book, the author uses real-world examples and case studies to illustrate the concepts and techniques discussed. The book also includes exercises and projects to help readers practice and apply their knowledge. The author's writing style is clear and concise, making it accessible to both beginners and experienced professionals in the field.
Starting Data Analytics with Generative AI and Python - всеобъемлющее руководство, охватывающее основы аналитики данных с использованием генеративного AI и языка программирования Python. Книга дает читателям твердое понимание концепций и методов анализа данных и их практического применения в различных отраслях. Он начинается с введения основ аналитики данных и постепенно движется к более продвинутым темам, таким как машинное обучение, глубокое обучение и нейронные сети. В книге также рассматривается использование генеративного ИИ в аналитике данных и его потенциальное применение в таких областях, как обработка изображений и видео, обработка естественного языка и прогнозное моделирование. Книга разделена на четыре части: Часть 1 - Введение в аналитику данных, Часть 2 - Генеративный ИИ и программирование на Python, Часть 3 - Расширенные темы в аналитике данных и Часть 4 - Тематические исследования и приложения. Каждая часть основывается на предыдущей, обеспечивая полное понимание предмета. Завершает книгу дискуссия о будущем аналитики данных и ее потенциальном влиянии на общество. На протяжении всей книги автор использует реальные примеры и тематические исследования для иллюстрации обсуждаемых концепций и методов. В книгу также вошли упражнения и проекты, которые помогут читателям потренироваться и применить свои знания. Авторский стиль письма ясен и лаконичен, что делает его доступным как для начинающих, так и для опытных специалистов в данной области.
Starting Data Analytics with Generative AI and Python è una guida completa che comprende le basi degli analisti dei dati utilizzando l'AI generativo e il linguaggio di programmazione Python. Il libro fornisce ai lettori una chiara comprensione dei concetti e dei metodi di analisi dei dati e delle loro applicazioni pratiche in diversi settori. Inizia con l'introduzione di basi di analisi dei dati e si muove gradualmente verso temi più avanzati come l'apprendimento automatico, l'apprendimento approfondito e le reti neurali. Il libro descrive anche l'uso dell'IA generale nell'analisi dei dati e la sua potenziale applicazione in settori quali l'elaborazione di immagini e video, l'elaborazione del linguaggio naturale e la simulazione predittiva. Il libro è suddiviso in quattro parti: Parte 1 - Introduzione all'analisi dei dati, Parte 2 - Generale IA e programmazione su Python, Parte 3 - Argomenti avanzati nell'analisi dei dati e Parte 4 - Studi di caso e applicazioni. Ogni parte si basa sulla parte precedente, garantendo una piena comprensione dell'oggetto. Completa la discussione sul futuro degli analisti dei dati e sul suo potenziale impatto sulla società. Durante tutto il libro, l'autore utilizza esempi reali e studi di caso per illustrare i concetti e i metodi discussi. Il libro include anche esercizi e progetti che aiuteranno i lettori ad esercitarsi e ad applicare le loro conoscenze. Lo stile di scrittura degli autori è chiaro e conciso, rendendolo accessibile sia ai principianti che ai professionisti esperti in questo campo.
''

You may also be interested in:

Feature Engineering for Machine Learning and Data Analytics
Financial Data Analytics with R Monte-Carlo Validation
Recent Trends and Future Direction for Data Analytics
Augmenting Customer Retention Through Big Data Analytics
Augmenting Customer Retention Through Big Data Analytics
Reconnaissance for Ethical Hackers: Focus on the starting point of data breaches and explore essential steps for successful pentesting
Data Curious: Applying Agile Analytics for Better Business Decisions
Data Science for Decision Makers Using Analytics and Case Studies
Learning Spark Lightning-Fast Data Analytics, Second Edition
Big Data Analytics Theory, Techniques, Platforms, and Applications
Predictive Analytics and Data Mining Concepts and Practice with RapidMiner
Big Data Analytics Theory, Techniques, Platforms, and Applications
Data Analytics A Theoretical and Practical View from the EDISON Project
AIoT and Big Data Analytics for Smart Healthcare Applications
Data Analytics and Machine Learning for Integrated Corridor Management
IoT, Machine Learning and Data Analytics for Smart Healthcare
Big Data Analytics and Intelligent Techniques for Smart Cities
Data-Driven Modelling and Predictive Analytics in Business and Finance
Data Analytics Systems Engineering - Cybersecurity - Project Management
Big Data Analytics Tools and Technology for Effective Planning
AIoT and Big Data Analytics for Smart Healthcare Applications
Data-Driven Modelling and Predictive Analytics in Business and Finance
Machine Learning Approach for Cloud Data Analytics in IoT
Blockchain Transaction Data Analytics Complex Network Approaches
Data Analytics A Theoretical and Practical View from the EDISON Project
Advanced Deep Learning Applications in Big Data Analytics
Advanced Analytics with Spark Patterns for Learning from Data at Scale
Pivoting Government through Digital Transformation (Data Analytics Applications)
AIoT and Big Data Analytics for Smart Healthcare Applications
Data Science for IoT Engineers A Systems Analytics Approach
IoT, Machine Learning and Data Analytics for Smart Healthcare
Mastering Snowflake Solutions Supporting Analytics and Data Sharing
Data Analytics and Machine Learning for Integrated Corridor Management
Demystifying Big Data Analytics for Industries and Smart Societies
IoT, Machine Learning and Data Analytics for Smart Healthcare
Big Data Analytics with Applications in Insider Threat Detection
Big-Data Analytics for Cloud, IoT and Cognitive Computing
Data Analytics Approaches in Educational Games and Gamification Systems
Big Data Analytics for Connected Vehicles and Smart Cities
Financial Data Analytics with Machine Learning, Optimization and Statistics