BOOKS - Mathematics for Data Science Linear Algebra with Matlab
Mathematics for Data Science Linear Algebra with Matlab - Cesar Perez Lopez 2025 PDF | EPUB Scientific Books BOOKS
ECO~18 kg CO²

1 TON

Views
41891

Telegram
 
Mathematics for Data Science Linear Algebra with Matlab
Author: Cesar Perez Lopez
Year: 2025
Pages: 447
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Jacobs. The book "Mathematics for Data Science Linear Algebra with Matlab" by Steve H. Jacobs provides a comprehensive introduction to linear algebra and its applications in data science using MATLAB. The book covers topics such as vector spaces, linear transformations, eigenvalues and eigenvectors, diagonalization, and singular value decomposition. It also discusses the use of these concepts in machine learning, computer vision, and other areas of data science. The author emphasizes the importance of understanding the underlying mathematical principles of data science techniques and provides practical examples and exercises to help readers apply their knowledge. The book begins by introducing the concept of vectors and vector operations, including dot products, cross products, and norms. It then moves on to cover linear transformations and matrices, including matrix multiplication, inverse matrices, and determinants. The author also discusses the concept of eigenvalues and eigenvectors, which are used to diagonalize matrices and solve systems of linear equations. One of the key themes of the book is the idea that linear algebra is essential for data science, as it provides the mathematical foundation for many of the techniques used in the field. The author argues that without a solid understanding of linear algebra, it is impossible to fully understand the underlying principles of data science. He also emphasizes the importance of using MATLAB to perform computations and visualize results, as it is a powerful tool for working with matrices and vectors.
Jacobs. В книге «Mathematics for Data Science Linear Algebra with Matlab» Стива Х. Джейкобса (Steve H. Jacobs) представлено всестороннее введение в линейную алгебру и её приложения в науке о данных с использованием MATLAB. Книга охватывает такие темы, как векторные пространства, линейные преобразования, собственные значения и собственные векторы, диагонализация и декомпозиция сингулярных значений. Также обсуждается использование этих понятий в машинном обучении, компьютерном зрении и других областях науки о данных. Автор подчеркивает важность понимания основных математических принципов методов науки о данных и приводит практические примеры и упражнения, чтобы помочь читателям применить свои знания. Книга начинается с введения понятия векторов и векторных операций, включая скалярные произведения, перекрестные произведения и нормы. Затем он переходит к линейным преобразованиям и матрицам, включая умножение матриц, обратные матрицы и детерминанты. Автор также обсуждает понятие собственных значений и собственных векторов, которые используются для диагонализации матриц и решения систем линейных уравнений. Одной из ключевых тем книги является идея о том, что линейная алгебра имеет важное значение для науки о данных, поскольку она обеспечивает математическую основу для многих методов, используемых в этой области. Автор утверждает, что без твердого понимания линейной алгебры невозможно полностью понять основополагающие принципы науки о данных. Он также подчеркивает важность использования MATLAB для выполнения вычислений и визуализации результатов, так как это мощный инструмент для работы с матрицами и векторами.
''

You may also be interested in:

Python Data Science The Complete Guide to Data Analytics + Machine Learning + Big Data Science + Pandas Python. The Easy Way to Programming (Exercises Included)
Linear Algebra and Matrix Computations with MATLAB(R) (De Gruyter STEM)
Linear Algebra and Group Theory for Physicists and Engineers, Second Edition
Hadamard Matrices: Constructions using Number Theory and Linear Algebra
Practical Linear Algebra A Geometry Toolbox, 4th Edition
Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
Computational Methods of Linear Algebra by Faddeeva, V. N. (June 1, 1959) Paperback
Linear Algebra for Pattern Processing Projection, Singular Value Decomposition, and Pseudoinverse
Elementary Linear Algebra with Applications MATLAB®, Mathematica® and Maplesoft™ (De Gruyter Textbook)
Linear Algebra: A Minimal Polynomial Approach to Eigen Theory (De Gruyter Textbook)
Elementary Linear Algebra with Applications MATLAB®, Mathematica® and Maplesoft™ (De Gruyter Textbook)
Essential Math for AI Exploring Linear Algebra, Probability and Statistics, Calculus, Optimization Techniques, and More
Essential Math for AI Exploring Linear Algebra, Probability and Statistics, Calculus, Optimization Techniques, and More
Recent Developments in Algebra and Analysis: International Conference on Recent Developments in Mathematics, Dubai, 2022 - Volume 1 (Trends in Mathematics)
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud, Global Edition
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
Learn Data Science Fundamentals A Beginner|s Guide To Data Science Programs, Analysis And Visualization
Big Data and Social Science Data Science Methods and Tools for Research and Practice, 2nd Edition
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
DATA SCIENCE WITH PYTHON Complete Guide To Understanding Data Analytics And Data Science With Python Programming
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Why Data Science Projects Fail: The Harsh Realities of Implementing AI and Analytics, without the Hype (Chapman and Hall CRC Data Science Series)
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud
Power Electronic System Design Linking Differential Equations, Linear Algebra, and Implicit Functions
Efficient Execution of Irregular Dataflow Graphs: Hardware Software Co-optimization for Probabilistic AI and Sparse Linear Algebra
Fundamentals of Mathematics Algebra II
Data Science: A First Introduction (Chapman and Hall CRC Data Science Series)
Data Science A Comprehensive Beginners Guide to Learn the Realms of Data Science
Data Science A Comprehensive Beginner’s Guide to Learn About the Realms of Data Science from A-Z
Linear Algebraic Groups (Graduate Texts in Mathematics, 21)
Fundamentals of Mathematics Algebra I, Second Edition
Introduction to Algorithms and Data Structures 3: Learn Linear Data Structures with Videos and Interview Questions
Transcendence and Linear Relations of 1-Periods (Cambridge Tracts in Mathematics)
Confident Data Science Discover the Essential Skills of Data Science
Confident Data Science Discover the Essential Skills of Data Science
Data Science The Hard Parts Techniques for Excelling at Data Science
Data Science The Hard Parts Techniques for Excelling at Data Science