BOOKS - Principles of Machine Learning The Three Perspectives
Principles of Machine Learning The Three Perspectives - Wenmin Wang 2025 PDF | EPUB Springer BOOKS
ECO~19 kg CO²

2 TON

Views
10446

Telegram
 
Principles of Machine Learning The Three Perspectives
Author: Wenmin Wang
Year: 2025
Pages: 548
Format: PDF | EPUB
File size: 39.5 MB
Language: ENG



Pay with Telegram STARS
Principles of Machine Learning The Three Perspectives The book "Principles of Machine Learning The Three Perspectives" is a comprehensive guide that explores the three main perspectives of machine learning: the technical perspective, the business perspective, and the societal perspective. It provides a deep understanding of the process of technology evolution and its impact on society, highlighting the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. Technical Perspective The technical perspective focuses on the development of machine learning algorithms and their applications in various industries. It covers the basics of machine learning, including supervised and unsupervised learning, neural networks, and deep learning. The book explains how these algorithms are used to solve complex problems in areas such as image recognition, natural language processing, and predictive modeling. It also discusses the challenges and limitations of machine learning, such as overfitting, underfitting, and the need for large amounts of data. Business Perspective The business perspective examines the role of machine learning in the corporate world, including its use in automation, decision-making, and strategy development. It explores the potential benefits and risks of implementing machine learning in business, such as increased efficiency, improved customer service, and job displacement.
Принципы машинного обучения Три перспективы Книга «Принципы машинного обучения Три перспективы» является всеобъемлющим руководством, в котором рассматриваются три основные перспективы машинного обучения: техническая перспектива, бизнес-перспектива и социальная перспектива. Она дает глубокое понимание процесса эволюции технологий и его влияния на общество, подчеркивая необходимость личностной парадигмы восприятия технологического процесса развития современных знаний как основы выживания человечества и выживания объединения людей в воюющем государстве. Техническая перспектива Техническая перспектива фокусируется на разработке алгоритмов машинного обучения и их приложений в различных отраслях. Он охватывает основы машинного обучения, включая обучение с учителем и без учителя, нейронные сети и глубокое обучение. В книге объясняется, как эти алгоритмы используются для решения сложных задач в таких областях, как распознавание изображений, обработка естественного языка и прогнозное моделирование. В нем также обсуждаются проблемы и ограничения машинного обучения, такие как переобучение, недостаточное оснащение и потребность в больших объемах данных. Бизнес-перспектива Бизнес-перспектива рассматривает роль машинного обучения в корпоративном мире, включая его использование в автоматизации, принятии решений и разработке стратегии. В нем рассматриваются потенциальные преимущества и риски внедрения машинного обучения в бизнес, такие как повышение эффективности, улучшение обслуживания клиентов и замещение рабочих мест.
''

You may also be interested in:

Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Learning TensorFlow.js Powerful Machine Learning in javascript
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)
Machine Learning - A Journey To Deep Learning With Exercises And Answers
Machine Learning and Deep Learning in Natural Language Processing
Machine Learning and Deep Learning in Natural Language Processing
Distributional Reinforcement Learning (Adaptive Computation and Machine Learning)
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Statistical Reinforcement Learning Modern Machine Learning Approaches
Machine Learning and Deep Learning in Real-Time Applications
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Default Loan Prediction Based On Customer Behavior Using Machine Learning And Deep Learning With Python, Second Edition
Python Machine Learning for Beginners Learning from Scratch Numpy, Pandas, Matplotlib, Seaborn, SKlearn and TensorFlow 2.0
Generative AI with Python Harnessing The Power Of Machine Learning And Deep Learning To Build Creative And Intelligent Systems
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Machine Learning. Supervised Learning Techniques and Tools Nonlinear Models Exercises with R, SAS, STATA, EVIEWS and SPSS
Learning Genetic Algorithms with Python Empower the Performance of Machine Learning and AI Models with the Capabilities of a Powerful Search Algorithm
Machine Learning in Elixir Learning to Learn with Nx and Axon
Machine Learning in Elixir Learning to Learn with Nx and Axon
Programming Machine Learning From Coding to Deep Learning
Data Science Crash Course Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI, Second Edition
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)