BOOKS - Statistical Machine Learning for Engineering with Applications
Statistical Machine Learning for Engineering with Applications - Jurgen Franke, Anita Schobel 2024 PDF Springer BOOKS
ECO~15 kg CO²

1 TON

Views
16972

Telegram
 
Statistical Machine Learning for Engineering with Applications
Author: Jurgen Franke, Anita Schobel
Year: 2024
Pages: 393
Format: PDF
File size: 17.9 MB
Language: ENG



Pay with Telegram STARS
Book Description: Statistical Machine Learning for Engineering with Applications provides a comprehensive introduction to statistical machine learning methods and their applications in engineering. The book covers the fundamental concepts and techniques of statistical machine learning, including probability theory, statistical inference, and machine learning algorithms. It also discusses advanced topics such as deep learning, transfer learning, and reinforcement learning. The book includes practical examples and case studies to illustrate the application of statistical machine learning in various fields of engineering, including computer vision, natural language processing, and robotics. The book is divided into four parts: Part I provides an overview of statistical machine learning, including the basics of probability theory and statistical inference. Part II covers the fundamental machine learning algorithms, including linear regression, logistic regression, decision trees, and support vector machines. Part III explores advanced machine learning topics, such as deep learning, transfer learning, and reinforcement learning. Part IV discusses the applications of statistical machine learning in various fields of engineering, including computer vision, natural language processing, and robotics. Throughout the book, the authors emphasize the importance of understanding the underlying principles of statistical machine learning and provide numerous examples and exercises to help readers develop a deeper understanding of the subject. The book is suitable for students, researchers, and practitioners who want to learn about the applications of statistical machine learning in engineering.
Статистическое машинное обучение для проектирования с приложениями обеспечивает всестороннее введение в статистические методы машинного обучения и их приложения в проектировании. Книга охватывает фундаментальные концепции и методы статистического машинного обучения, включая теорию вероятностей, статистический вывод и алгоритмы машинного обучения. В нем также обсуждаются такие передовые темы, как глубокое обучение, обучение с переносом и обучение с подкреплением. Книга включает практические примеры и тематические исследования, иллюстрирующие применение статистического машинного обучения в различных областях инженерии, включая компьютерное зрение, обработку естественного языка и робототехнику. Книга разделена на четыре части: в части I представлен обзор статистического машинного обучения, включая основы теории вероятностей и статистического вывода. Часть II охватывает фундаментальные алгоритмы машинного обучения, включая линейную регрессию, логистическую регрессию, деревья решений и машины опорных векторов. В части III рассматриваются передовые темы машинного обучения, такие как глубокое обучение, обучение с переносом и обучение с подкреплением. В части IV обсуждаются применения статистического машинного обучения в различных областях инженерии, включая компьютерное зрение, обработку естественного языка и робототехнику. На протяжении всей книги авторы подчеркивают важность понимания основополагающих принципов статистического машинного обучения и приводят многочисленные примеры и упражнения, чтобы помочь читателям развить более глубокое понимание предмета. Книга подходит для студентов, исследователей и практиков, которые хотят узнать о приложениях статистического машинного обучения в технике.
L'apprentissage machine statistique pour la conception avec des applications fournit une introduction complète aux méthodes d'apprentissage machine statistique et leurs applications dans la conception. livre couvre les concepts fondamentaux et les méthodes de l'apprentissage machine statistique, y compris la théorie des probabilités, la conclusion statistique et les algorithmes d'apprentissage machine. Il traite également de sujets de pointe tels que l'apprentissage profond, l'apprentissage transférable et l'apprentissage renforcé. livre comprend des exemples pratiques et des études de cas illustrant l'application de l'apprentissage machine statistique dans divers domaines de l'ingénierie, y compris la vision par ordinateur, le traitement du langage naturel et la robotique. livre est divisé en quatre parties : la partie I donne un aperçu de l'apprentissage machine statistique, y compris les fondements de la théorie des probabilités et des conclusions statistiques. La partie II couvre les algorithmes fondamentaux de l'apprentissage automatique, y compris la régression linéaire, la régression logistique, les arbres de décision et les machines de vecteurs de référence. La partie III traite des thèmes avancés de l'apprentissage automatique, tels que l'apprentissage profond, l'apprentissage par transfert et l'apprentissage par renforcement. La partie IV traite des applications de l'apprentissage automatique statistique dans divers domaines de l'ingénierie, y compris la vision par ordinateur, le traitement du langage naturel et la robotique. Tout au long du livre, les auteurs soulignent l'importance de comprendre les principes fondamentaux de l'apprentissage automatique statistique et donnent de nombreux exemples et exercices pour aider les lecteurs à mieux comprendre le sujet. livre est adapté pour les étudiants, les chercheurs et les praticiens qui veulent en apprendre davantage sur les applications de l'apprentissage machine statistique dans la technique.
aprendizaje automático estadístico para el diseño con aplicaciones proporciona una introducción integral a las técnicas estadísticas del aprendizaje automático y sus aplicaciones en el diseño. libro cubre conceptos fundamentales y métodos de aprendizaje automático estadístico, incluyendo teoría de probabilidad, conclusión estadística y algoritmos de aprendizaje automático. También aborda temas avanzados como el aprendizaje profundo, el aprendizaje con transferencia y el aprendizaje con refuerzo. libro incluye ejemplos prácticos y estudios de casos que ilustran la aplicación del aprendizaje automático estadístico en diversos campos de la ingeniería, incluyendo la visión por computadora, el procesamiento del lenguaje natural y la robótica. libro se divide en cuatro partes: la parte I presenta una visión general del aprendizaje automático estadístico, incluyendo los fundamentos de la teoría de la probabilidad y la inferencia estadística. La Parte II abarca los algoritmos fundamentales del aprendizaje automático, incluyendo la regresión lineal, la regresión logística, los árboles de decisión y las máquinas de vectores de referencia. La parte III aborda temas avanzados del aprendizaje automático, como el aprendizaje profundo, el aprendizaje con transferencia y el aprendizaje con refuerzo. En la parte IV se examinan las aplicaciones del aprendizaje automático estadístico en diversos campos de la ingeniería, incluida la visión por computadora, el procesamiento del lenguaje natural y la robótica. A lo largo del libro, los autores destacan la importancia de comprender los principios fundamentales del aprendizaje automático estadístico y dan numerosos ejemplos y ejercicios para ayudar a los lectores a desarrollar una comprensión más profunda del tema. libro es adecuado para estudiantes, investigadores y profesionales que desean aprender sobre las aplicaciones de aprendizaje automático estadístico en la técnica.
L'apprendimento automatico statistico per la progettazione con applicazioni fornisce un'introduzione completa ai metodi statistici di apprendimento automatico e alle loro applicazioni di progettazione. Il libro comprende concetti e metodi fondamentali per l'apprendimento automatico statistico, inclusa la teoria delle probabilità, la conclusione statistica e gli algoritmi di apprendimento automatico. tratta anche di temi avanzati quali l'apprendimento approfondito, l'apprendimento spostato e l'apprendimento con rinforzi. Il libro include esempi pratici e studi di caso che illustrano l'applicazione dell'apprendimento automatico statistico in diversi settori dell'ingegneria, tra cui la visione informatica, l'elaborazione del linguaggio naturale e la robotica. Il libro è suddiviso in quattro parti: la parte I presenta una panoramica dell'apprendimento automatico statistico, incluse le basi della teoria delle probabilità e dell'output statistico. La parte II comprende algoritmi fondamentali di apprendimento automatico, tra cui la regressione lineare, la regressione logistica, gli alberi delle soluzioni e le macchine dei vettori di supporto. La parte III affronta i temi avanzati dell'apprendimento automatico, come l'apprendimento approfondito, l'apprendimento spostato e l'apprendimento con rinforzi. Nella parte IV si discute delle applicazioni dell'apprendimento automatico statistico in diversi settori dell'ingegneria, tra cui la visione informatica, l'elaborazione del linguaggio naturale e la robotica. Durante tutto il libro, gli autori sottolineano l'importanza di comprendere i principi fondamentali dell'apprendimento automatico statistico e citano numerosi esempi e esercizi per aiutare i lettori a sviluppare una maggiore comprensione della materia. Il libro è adatto per studenti, ricercatori e professionisti che vogliono conoscere le applicazioni di apprendimento automatico statistico nella tecnologia.
Statistisches maschinelles rnen für Design mit Anwendungen bietet eine umfassende Einführung in statistische Methoden des maschinellen rnens und deren Anwendungen im Design. Das Buch behandelt grundlegende Konzepte und Methoden des statistischen maschinellen rnens, einschließlich der Wahrscheinlichkeitstheorie, der statistischen Inferenz und der Algorithmen des maschinellen rnens. Es werden auch topaktuelle Themen wie Deep arning, Transferlernen und Verstärkungstraining diskutiert. Das Buch enthält praktische Beispiele und Fallstudien, die die Anwendung des statistischen maschinellen rnens in verschiedenen Bereichen des Ingenieurwesens veranschaulichen, darunter Computer Vision, natürliche Sprachverarbeitung und Robotik. Das Buch gliedert sich in vier Teile: Teil I gibt einen Überblick über das statistische maschinelle rnen, einschließlich der Grundlagen der Wahrscheinlichkeitstheorie und der statistischen Inferenz. Teil II umfasst grundlegende Algorithmen für maschinelles rnen, einschließlich linearer Regression, logistischer Regression, Entscheidungsbäumen und Support-Vektormaschinen. Teil III befasst sich mit fortgeschrittenen Themen des maschinellen rnens wie Deep arning, Transferlernen und Verstärkungstraining. Teil IV diskutiert Anwendungen des statistischen maschinellen rnens in verschiedenen Bereichen der Technik, einschließlich Computer Vision, natürliche Sprachverarbeitung und Robotik. Im Laufe des Buches betonen die Autoren, wie wichtig es ist, die grundlegenden Prinzipien des statistischen maschinellen rnens zu verstehen, und geben zahlreiche Beispiele und Übungen, um den sern zu helfen, ein tieferes Verständnis des Themas zu entwickeln. Das Buch eignet sich für Studenten, Forscher und Praktiker, die sich über Anwendungen des statistischen maschinellen rnens in der Technik informieren möchten.
''
Uygulamalarla Tasarım için İstatistiksel Makine Öğrenimi, istatistiksel makine öğrenimi yöntemlerine ve bunların tasarımdaki uygulamalarına kapsamlı bir giriş sağlar. Kitap, olasılık teorisi, istatistiksel çıkarım ve makine öğrenme algoritmaları dahil olmak üzere istatistiksel makine öğreniminin temel kavram ve yöntemlerini kapsar. Ayrıca derin öğrenme, transfer öğrenme ve takviye öğrenme gibi en yeni konuları tartışıyor. Kitapta, istatistiksel makine öğreniminin bilgisayar görüşü, doğal dil işleme ve robotik gibi çeşitli mühendislik alanlarında uygulanmasını gösteren vaka çalışmaları ve vaka çalışmaları yer almaktadır. Kitap dört bölüme ayrılmıştır: Bölüm I, olasılık teorisi ve istatistiksel çıkarımın temelleri de dahil olmak üzere istatistiksel makine öğrenimine genel bir bakış sağlar. Bölüm II, doğrusal regresyon, lojistik regresyon, karar ağaçları ve destek vektör makineleri dahil olmak üzere temel makine öğrenme algoritmalarını kapsar. Bölüm III, derin öğrenme, aktarmalı öğrenme ve pekiştirmeli öğrenme gibi en yeni makine öğrenimi konularını ele almaktadır. Bölüm IV, bilgisayar görüşü, doğal dil işleme ve robotik dahil olmak üzere çeşitli mühendislik alanlarında istatistiksel makine öğrenimi uygulamalarını tartışmaktadır. Kitap boyunca, yazarlar istatistiksel makine öğreniminin temel ilkelerini anlamanın önemini vurgulamakta ve okuyucuların konuyla ilgili daha derin bir anlayış geliştirmelerine yardımcı olacak çok sayıda örnek ve alıştırma sunmaktadır. Kitap, teknolojideki istatistiksel makine öğrenimi uygulamaları hakkında bilgi edinmek isteyen öğrenciler, araştırmacılar ve uygulayıcılar için uygundur.
يوفر التعلم الآلي الإحصائي للتصميم مع التطبيقات مقدمة شاملة لأساليب التعلم الآلي الإحصائي وتطبيقاتها في التصميم. يغطي الكتاب المفاهيم والأساليب الأساسية للتعلم الآلي الإحصائي، بما في ذلك نظرية الاحتمالات والاستدلال الإحصائي وخوارزميات التعلم الآلي. كما يناقش مواضيع متطورة مثل التعلم العميق، ونقل التعلم، وتعزيز التعلم. يتضمن الكتاب دراسات حالة ودراسات حالة توضح تطبيق التعلم الآلي الإحصائي في مجموعة متنوعة من المجالات الهندسية، بما في ذلك الرؤية الحاسوبية ومعالجة اللغة الطبيعية والروبوتات. ينقسم الكتاب إلى أربعة أجزاء: يقدم الجزء الأول نظرة عامة على التعلم الآلي الإحصائي، بما في ذلك أساسيات نظرية الاحتمالات والاستدلال الإحصائي. يغطي الجزء الثاني خوارزميات التعلم الآلي الأساسية بما في ذلك الانحدار الخطي والانحدار اللوجستي وأشجار القرار وآلات ناقلات الدعم. يتناول الجزء الثالث مواضيع التعلم الآلي المتطورة مثل التعلم العميق ونقل التعلم وتعزيز التعلم. يناقش الجزء الرابع تطبيقات التعلم الآلي الإحصائي في مختلف مجالات الهندسة، بما في ذلك الرؤية الحاسوبية ومعالجة اللغة الطبيعية والروبوتات. في جميع أنحاء الكتاب، أكد المؤلفون على أهمية فهم المبادئ الأساسية للتعلم الآلي الإحصائي وتقديم العديد من الأمثلة والتمارين لمساعدة القراء على تطوير فهم أعمق للموضوع. الكتاب مناسب للطلاب والباحثين والممارسين الذين يرغبون في التعرف على تطبيقات التعلم الآلي الإحصائية في التكنولوجيا.
用於設計應用程序的統計機器學習為統計機器學習方法及其在設計中的應用提供了全面的介紹。該書涵蓋了統計機器學習的基本概念和方法,包括概率論,統計推論和機器學習算法。它還討論了諸如深度學習,轉移學習和強化學習等高級主題。該書包括實例和案例研究,說明了統計機器學習在各種工程領域的應用,包括計算機視覺,自然語言處理和機器人技術。該書分為四個部分:第一部分概述了統計機器學習,包括概率論和統計推論的基礎。第二部分涵蓋了基本的機器學習算法,包括線性回歸,邏輯回歸,決策樹和參考向量機器。第三部分討論了先進的機器學習主題,例如深度學習,轉移學習和增強學習。第四部分討論了統計機器學習在各種工程領域的應用,包括計算機視覺,自然語言處理和機器人技術。在整個書中,作者強調了解統計機器學習的基本原理的重要性,並提供了許多示例和練習,以幫助讀者對主題有更深入的了解。該書適用於希望了解統計機器學習技術應用的學生,研究人員和從業人員。

You may also be interested in:

Cloud Computing for Machine Learning and Cognitive Applications A Machine Learning Approach
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Machine Learning Interviews: Kickstart Your Machine Learning and Data Career
Practical Machine Learning with R and Python Machine Learning in Stereo, Third Edition
Machine Learning for Beginners An Introduction to Artificial Intelligence and Machine Learning
Bayesian Machine Learning in Geotechnical Site Characterization (Challenges in Geotechnical and Rock Engineering)
Data Engineering for Machine Learning Pipelines From Python Libraries to ML Pipelines and Cloud Platforms
Machine Learning for Sustainable Manufacturing in Industry 4.0 (Mathematical Engineering, Manufacturing, and Management Sciences)
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Unsupervised Machine Learning in Python Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
Data-Centric Machine Learning with Python: The ultimate guide to engineering and deploying high-quality models based on good data
Machine Learning with Rust A practical attempt to explore Rust and its libraries across popular Machine Learning techniques
Practical Automated Machine Learning on Azure Using Azure Machine Learning to Quickly Build AI Solutions, First Edition
Machine Learning with Rust: A practical attempt to explore Rust and its libraries across popular machine learning techniques