BOOKS - Machine Learning Evaluation Towards Reliable and Responsible AI, 2nd Revised ...
Machine Learning Evaluation Towards Reliable and Responsible AI, 2nd Revised Edition - Nathalie Japkowicz, Zois Boukouvalas 2025 PDF | EPUB Cambridge University Press BOOKS
ECO~18 kg CO²

1 TON

Views
96509

Telegram
 
Machine Learning Evaluation Towards Reliable and Responsible AI, 2nd Revised Edition
Author: Nathalie Japkowicz, Zois Boukouvalas
Year: 2025
Pages: 427
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning Evaluation Towards Reliable and Responsible AI 2nd Revised Edition" by Dr. Suresh Venkatasubramanian and Dr. Jesse Berry is a comprehensive guide to understanding the process of machine learning and its role in shaping the future of artificial intelligence. The book provides a thorough overview of the field of machine learning, from its history and fundamental concepts to its current trends and applications. It emphasizes the importance of evaluating machine learning models to ensure their reliability and responsibility, which is crucial for the survival of humanity and the unity of people in a world filled with conflicts. The book begins with an introduction to the concept of machine learning and its evolution over time. It highlights the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity. This paradigm involves understanding the interconnectedness of technology, society, and human values, and recognizing the potential of machine learning to transform our lives. The authors argue that this perspective is essential for responsible innovation and the development of reliable AI systems.
Книга «Оценка машинного обучения на пути к надежному и ответственному ИИ, 2-е пересмотренное издание» доктора Суреша Венкатасубраманяна и доктора Джесси Берри является всеобъемлющим руководством по пониманию процесса машинного обучения и его роли в формировании будущего искусственного интеллекта. В книге представлен тщательный обзор области машинного обучения, от его истории и фундаментальных концепций до его современных тенденций и применений. В нем подчеркивается важность оценки моделей машинного обучения для обеспечения их надежности и ответственности, что имеет решающее значение для выживания человечества и единства людей в мире, наполненном конфликтами. Книга начинается с введения в понятие машинного обучения и его эволюции во времени. В ней подчеркивается необходимость личностной парадигмы восприятия технологического процесса развития современных знаний как основы выживания человечества. Эта парадигма включает в себя понимание взаимосвязанности технологий, общества и человеческих ценностей, а также признание потенциала машинного обучения для преобразования нашей жизни. Авторы утверждают, что эта перспектива необходима для ответственных инноваций и развития надежных систем ИИ.
livre « L'évaluation de l'apprentissage automatique sur la voie d'une IA fiable et responsable, 2ème édition révisée » du Dr Suresh Venkatasubramanian et du Dr Jesse Berry est un guide complet pour comprendre le processus d'apprentissage automatique et son rôle dans la construction de l'avenir de l'intelligence artificielle. livre donne un aperçu complet du domaine de l'apprentissage automatique, de son histoire et de ses concepts fondamentaux à ses tendances et applications contemporaines. Il souligne l'importance d'évaluer les modèles d'apprentissage automatique pour garantir leur fiabilité et leur responsabilité, ce qui est crucial pour la survie de l'humanité et l'unité des gens dans un monde rempli de conflits. livre commence par une introduction à la notion d'apprentissage automatique et son évolution dans le temps. Il souligne la nécessité d'un paradigme personnel pour percevoir le processus technologique du développement des connaissances modernes comme la base de la survie de l'humanité. Ce paradigme consiste à comprendre l'interdépendance entre la technologie, la société et les valeurs humaines, et à reconnaître le potentiel de l'apprentissage automatique pour transformer nos vies. s auteurs affirment que cette perspective est nécessaire pour l'innovation responsable et le développement de systèmes d'IA fiables.
libro «Evaluación del aprendizaje automático en el camino hacia una IA confiable y responsable, 2ª edición revisada» del Dr. Suresh Venkatasubramanian y el Dr. Jesse Berry es una guía integral para entender el proceso de aprendizaje automático y su papel en la formación del futuro de la inteligencia artificial. libro presenta una revisión exhaustiva del campo del aprendizaje automático, desde su historia y conceptos fundamentales hasta sus tendencias y aplicaciones contemporáneas. Subraya la importancia de evaluar los modelos de aprendizaje automático para garantizar su fiabilidad y responsabilidad, que son cruciales para la supervivencia de la humanidad y la unidad de los seres humanos en un mundo lleno de conflictos. libro comienza con una introducción al concepto de aprendizaje automático y su evolución en el tiempo. Destaca la necesidad de un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base para la supervivencia de la humanidad. Este paradigma incluye la comprensión de la interconexión de la tecnología, la sociedad y los valores humanos, así como el reconocimiento del potencial del aprendizaje automático para transformar nuestras vidas. autores sostienen que esta perspectiva es necesaria para la innovación responsable y el desarrollo de sistemas de IA confiables.
Il libro «Valutazione dell'apprendimento automatico verso un'intelligenza artificiale affidabile e responsabile, seconda edizione rivista» del dottor Suresh Venkatasubramanian e del dottor Jesse Berry è una guida completa per comprendere il processo di apprendimento automatico e il suo ruolo nella formazione del futuro dell'intelligenza artificiale. Il libro fornisce una panoramica approfondita del campo dell'apprendimento automatico, dalla sua storia e concetti fondamentali alle sue tendenze e applicazioni attuali. Sottolinea l'importanza di valutare i modelli di apprendimento automatico per garantire la loro affidabilità e responsabilità, che è fondamentale per la sopravvivenza dell'umanità e dell'unità umana in un mondo pieno di conflitti. Il libro inizia con l'introduzione nel concetto di apprendimento automatico e la sua evoluzione nel tempo. Sottolinea la necessità di un paradigma personale per la percezione del processo tecnologico di sviluppo della conoscenza moderna come base per la sopravvivenza dell'umanità. Questo paradigma comprende la comprensione dell'interconnessione tra tecnologia, società e valori umani e il riconoscimento del potenziale di apprendimento automatico per trasformare le nostre vite. Gli autori sostengono che questa prospettiva è necessaria per innovare in modo responsabile e sviluppare sistemi di IA affidabili.
Das Buch „Assessment of Machine arning towards a Trusted and Responsible AI, 2nd Revised Edition“ von Dr. Suresh Venkatasubramanian und Dr. Jesse Berry ist ein umfassender itfaden zum Verständnis des maschinellen rnprozesses und seiner Rolle bei der Gestaltung der Zukunft der künstlichen Intelligenz. Das Buch bietet einen gründlichen Überblick über den Bereich des maschinellen rnens, von seiner Geschichte und den grundlegenden Konzepten bis hin zu seinen aktuellen Trends und Anwendungen. Es betont die Bedeutung der Bewertung von Modellen des maschinellen rnens, um ihre Zuverlässigkeit und Verantwortung sicherzustellen, die für das Überleben der Menschheit und die Einheit der Menschen in einer Welt voller Konflikte von entscheidender Bedeutung ist. Das Buch beginnt mit einer Einführung in das Konzept des maschinellen rnens und seiner Entwicklung im Laufe der Zeit. Es betont die Notwendigkeit eines persönlichen Paradigmas der Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens als Grundlage für das Überleben der Menschheit. Dieses Paradigma beinhaltet das Verständnis der Vernetzung von Technologie, Gesellschaft und menschlichen Werten sowie die Anerkennung des Potenzials des maschinellen rnens, um unser ben zu verändern. Die Autoren argumentieren, dass diese Perspektive für verantwortungsvolle Innovationen und die Entwicklung robuster KI-Systeme unerlässlich ist.
Książka „Machine arning Assessment Towards Robust and Responsible AI, 2nd Revised Edition” przez Dr. Suresh Venkatasubramanian i Dr. Jesse Berry jest kompleksowym przewodnikiem do zrozumienia procesu uczenia maszynowego i jego roli w kształtowaniu przyszłości sztucznego inteligencja. Książka zawiera dokładny przegląd dziedziny uczenia maszynowego, począwszy od historii i podstawowych koncepcji po aktualne trendy i zastosowania. Podkreśla znaczenie oceny modeli uczenia maszynowego w celu zapewnienia ich solidności i odpowiedzialności, co ma kluczowe znaczenie dla ludzkiego przetrwania i jedności człowieka w świecie pełnym konfliktów. Książka zaczyna się od wprowadzenia do koncepcji uczenia maszynowego i jego ewolucji w czasie. Podkreśla potrzebę osobistego paradygmatu postrzegania technologicznego procesu rozwoju nowoczesnej wiedzy jako podstawy przetrwania ludzkości. Paradygmat ten obejmuje zrozumienie wzajemnych powiązań technologii, społeczeństwa i wartości ludzkich oraz uznanie potencjału uczenia maszynowego w celu przekształcenia naszego życia. Autorzy twierdzą, że perspektywa ta ma zasadnicze znaczenie dla odpowiedzialnej innowacji i rozwoju solidnych systemów sztucznej inteligencji.
''
Dr. Suresh Venkatasubramanian ve Dr. Jesse Berry'nin "Sağlam ve Sorumlu Yapay Zekaya Yönelik Makine Öğrenimi Değerlendirmesi, 2. Gözden Geçirilmiş Baskı" kitabı, makine öğrenimi sürecini ve yapay zekanın geleceğini şekillendirmedeki rolünü anlamak için kapsamlı bir rehberdir. Kitap, geçmişinden ve temel kavramlarından mevcut trendlerine ve uygulamalarına kadar makine öğrenimi alanına kapsamlı bir genel bakış sunmaktadır. Makine öğrenimi modellerini, çatışmalarla dolu bir dünyada insanın hayatta kalması ve insan birliği için kritik olan sağlamlıklarını ve hesap verebilirliklerini sağlamak için değerlendirmenin önemini vurgulamaktadır. Kitap, makine öğrenimi kavramına ve zaman içindeki evrimine bir giriş ile başlıyor. İnsanlığın hayatta kalmasının temeli olarak modern bilginin gelişiminin teknolojik sürecinin kişisel bir algı paradigmasına olan ihtiyacı vurgulamaktadır. Bu paradigma, teknolojinin, toplumun ve insani değerlerin birbirine bağlılığını anlamayı ve makine öğreniminin yaşamlarımızı dönüştürme potansiyelini tanımayı içerir. Yazarlar, bu bakış açısının sorumlu inovasyon ve sağlam AI sistemlerinin geliştirilmesi için gerekli olduğunu savunuyorlar.
كتاب «تقييم التعلم الآلي نحو الذكاء الاصطناعي القوي والمسؤول، الطبعة الثانية المنقحة» للدكتور سوريش فينكاتاسوبرامانيان والدكتور جيسي بيري هو دليل شامل لفهم عملية التعلم الآلي ودورها في تشكيل مستقبل الذكاء الاصطناعي. يقدم الكتاب نظرة عامة شاملة على مجال التعلم الآلي، من تاريخه ومفاهيمه الأساسية إلى اتجاهاته وتطبيقاته الحالية. يسلط الضوء على أهمية تقييم نماذج التعلم الآلي لضمان قوتها ومساءلتها، وهو أمر بالغ الأهمية لبقاء الإنسان والوحدة البشرية في عالم مليء بالصراع. يبدأ الكتاب بمقدمة لمفهوم التعلم الآلي وتطوره عبر الزمن. ويؤكد على الحاجة إلى نموذج شخصي لتصور العملية التكنولوجية لتطور المعرفة الحديثة كأساس لبقاء البشرية. يتضمن هذا النموذج فهم الترابط بين التكنولوجيا والمجتمع والقيم الإنسانية، والاعتراف بإمكانية التعلم الآلي لتغيير حياتنا. يجادل المؤلفون بأن هذا المنظور ضروري للابتكار المسؤول وتطوير أنظمة ذكاء اصطناعي قوية.
Suresh Venkatasubramanian博士和Jesse Berry博士撰寫的《評估機器學習走向可靠和負責任的AI,第二修訂版》一書是了解機器學習過程及其在塑造人工智能未來的作用的全面指南。該書詳細介紹了機器學習領域,從其歷史和基本概念到其現代趨勢和應用。它強調評估機器學習模式的重要性,以確保其可靠性和責任,這對人類生存和人類在一個充滿沖突的世界中的團結至關重要。本書首先介紹了機器學習的概念及其隨時間的演變。它強調有必要以個人範式來看待現代知識的發展過程作為人類生存的基礎。這種範式包括了解技術,社會和人類價值觀的相互聯系,並認識到機器學習改變我們生活的潛力。作者認為,這種觀點對於負責任的創新和發展可靠的AI系統至關重要。

You may also be interested in:

Machine Learning with Python Advanced Guide in Machine Learning with Python
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Machine Learning with Python A Step-By-Step Guide to Learn and Master Python Machine Learning
Evaluation in Organizations: A Systematic Approach to Enhancing Learning, Performance, and Change
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Learning TensorFlow.js Powerful Machine Learning in javascript
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Machine Learning - A Journey To Deep Learning With Exercises And Answers
Machine Learning and Deep Learning in Real-Time Applications
Statistical Reinforcement Learning Modern Machine Learning Approaches
Machine Learning and Deep Learning in Natural Language Processing
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Natural Language Processing
Distributional Reinforcement Learning (Adaptive Computation and Machine Learning)
Generative AI with Python Harnessing The Power Of Machine Learning And Deep Learning To Build Creative And Intelligent Systems
Default Loan Prediction Based On Customer Behavior Using Machine Learning And Deep Learning With Python, Second Edition
Python Machine Learning for Beginners Learning from Scratch Numpy, Pandas, Matplotlib, Seaborn, SKlearn and TensorFlow 2.0
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning. Supervised Learning Techniques and Tools Nonlinear Models Exercises with R, SAS, STATA, EVIEWS and SPSS
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Learning Genetic Algorithms with Python Empower the Performance of Machine Learning and AI Models with the Capabilities of a Powerful Search Algorithm