BOOKS - TECHNICAL SCIENCES - Data Science For Wind Energy
Data Science For Wind Energy - Yu Ding 2020 PDF CRC Press BOOKS TECHNICAL SCIENCES
ECO~18 kg CO²

1 TON

Views
40158

Telegram
 
Data Science For Wind Energy
Author: Yu Ding
Year: 2020
Pages: 425
Format: PDF
File size: 62,88 MB
Language: ENG



Pay with Telegram STARS
Book Description: Data Science for Wind Energy Author: Yu Ding 2020 425 CRC Press Summary: Data Science for Wind Energy delves into the application of data science methods to enhance decision-making processes in wind energy, specifically focusing on near-ground wind field analysis, turbine power curve fitting, performance evaluation, and maintenance optimization for wind turbines and wind farms. The book explores a wide range of data science techniques, from time series models to spatiotemporal analysis, kernel regression, decision trees, k-NN, Bayesian inference, and importance sampling, all within the context of wind energy applications. With specific wind energy examples and case studies throughout, this comprehensive guide provides readers with a deep understanding of how data science can improve wind energy production and efficiency. Plot: The plot of Data Science for Wind Energy revolves around the need to understand and harness the power of technology to ensure the survival of humanity and unity in a warring world. As the world grapples with the challenges of climate change, energy scarcity, and political conflicts, the book highlights the urgent need for developing a personal paradigm for perceiving the technological process of modern knowledge development. This paradigm shift is crucial for adapting to the rapidly evolving technological landscape and ensuring the sustainability of our planet.
Data Science for Wind Energy Author: Yu Ding 2020 425 CRC Press Summary: Data Science for Wind Energy углубляется в применение методов науки о данных для улучшения процессов принятия решений в ветроэнергетике, уделяя особое внимание анализу поля ветра вблизи земли, подгонке кривой мощности турбины, оценке производительности и оптимизации технического обслуживания для ветряных турбин и ветряных электростанций. Книга исследует широкий спектр методов науки о данных, от моделей временных рядов до пространственно-временного анализа, регрессии ядра, деревьев решений, k-NN, байесовского вывода и выборки важности, и все это в контексте применения энергии ветра. С конкретными примерами энергии ветра и примерами из практики, это всеобъемлющее руководство дает читателям глубокое понимание того, как наука о данных может улучшить производство и эффективность энергии ветра. Сюжет: Сюжет Data Science for Wind Energy вращается вокруг необходимости понять и использовать силу технологий для обеспечения выживания человечества и единства в воюющем мире. В то время как мир борется с проблемами изменения климата, дефицита энергии и политических конфликтов, книга подчеркивает насущную необходимость разработки личной парадигмы для восприятия технологического процесса развития современных знаний. Это изменение парадигмы имеет решающее значение для адаптации к быстро развивающемуся технологическому ландшафту и обеспечения устойчивости нашей планеты.
Data Science for Wind Energy Author: Yu Ding 2020 425 CRC Press Summary: Data Science for Wind Energy si approfondisce nell'applicazione delle tecniche di scienza dei dati per migliorare i processi decisionali nell'eolico, con particolare attenzione all'analisi del campo vicino al vento, all'adattamento della curva di potenza della turbina, alla valutazione delle prestazioni e all'ottimizzazione della manutenzione per l'eolico turbine e impianti eolici. Il libro esplora una vasta gamma di tecniche di scienza dei dati, dai modelli di serie temporali all'analisi spazio-tempo, regressione core, alberi di soluzioni, k-NN, output bayesiano e campionamento di importanza, e tutto questo nel contesto dell'applicazione dell'energia eolica. Con esempi specifici di energia eolica e esempi di pratica, questa guida completa fornisce ai lettori una profonda comprensione di come la scienza dei dati possa migliorare la produzione e l'efficienza dell'energia eolica. La trama di Data Science for Wind Energy ruota intorno alla necessità di comprendere e sfruttare il potere della tecnologia per garantire la sopravvivenza dell'umanità e l'unità nel mondo in guerra. Mentre il mondo combatte i cambiamenti climatici, le carenze energetiche e i conflitti politici, il libro sottolinea l'urgente necessità di sviluppare un paradigma personale per la percezione del processo tecnologico di sviluppo delle conoscenze moderne. Questo cambiamento di paradigma è fondamentale per adattarsi al panorama tecnologico in rapida evoluzione e garantire la sostenibilità del nostro pianeta.
''
風力エネルギーのためのデータサイエンス著者:Yu Ding 2020 425 CRCプレス要約:風力エネルギーのためのデータサイエンスは、風力発電の意思決定プロセスを改善するためのデータサイエンス技術の応用を掘り下げます、近接地風力分析に焦点を当てます、タービン電力曲線フィット、性能推定、および風力のメンテナンスの最適化農場だ。この本では、時系列モデルから時空解析、カーネル回帰、決定木、k-NN、ベイズ推論、および重要サンプリングまで、幅広いデータサイエンス手法を風力エネルギー応用の文脈で検討しています。風力エネルギーの具体例と実践例から、この包括的なガイドは、データサイエンスが風力エネルギーの生産と効率をどのように改善できるかを深く理解することができます。プロット:風力エネルギーのためのデータサイエンスのプロットは、戦争の世界で人類と統一の生存を確保するために技術の力を理解し、使用する必要性を中心に展開しています。世界が気候変動、エネルギー不足、政治的対立の課題に直面している中、この本は、現代の知識を開発する技術的プロセスを認識するための個人的なパラダイムを開発する緊急の必要性を強調しています。このパラダイムシフトは、急速に進化する技術的景観に適応し、地球の持続可能性を確保するために不可欠です。

You may also be interested in:

Data Science For Wind Energy
Wind Energy in Electricity Markets With High Wind Penetration (Renewable Energy Research, Development and Policies)
Wind Energy Engineering A Handbook for Onshore and Offshore Wind Turbines
Wind Energy Engineering A Handbook for Onshore and Offshore Wind Turbines, 2nd Edition
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Wind Energy for the Rest of Us A Comprehensive Guide to Wind Power and How to Use it
Wind Energy Renewable Energy and the Environment Third Edition
Python Data Science The Complete Guide to Data Analytics + Machine Learning + Big Data Science + Pandas Python. The Easy Way to Programming (Exercises Included)
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud, Global Edition
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
Big Data and Social Science Data Science Methods and Tools for Research and Practice, 2nd Edition
Learn Data Science Fundamentals A Beginner|s Guide To Data Science Programs, Analysis And Visualization
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
DATA SCIENCE WITH PYTHON Complete Guide To Understanding Data Analytics And Data Science With Python Programming
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Why Data Science Projects Fail: The Harsh Realities of Implementing AI and Analytics, without the Hype (Chapman and Hall CRC Data Science Series)
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud
Data Science A Comprehensive Beginner’s Guide to Learn About the Realms of Data Science from A-Z
Data Science: A First Introduction (Chapman and Hall CRC Data Science Series)
Data Science A Comprehensive Beginners Guide to Learn the Realms of Data Science
Data Science: The Hard Parts: Techniques for Excelling at Data Science
Confident Data Science Discover the Essential Skills of Data Science
Data Science The Hard Parts Techniques for Excelling at Data Science
Confident Data Science Discover the Essential Skills of Data Science
Data Science The Hard Parts Techniques for Excelling at Data Science
Geothermal Energy: The Resource Under Our Feet (Energy Science, Engineering and Technology)
Graph Data Science with Python and Neo4j Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies
Graph Data Science with Python and Neo4j Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust: A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization and More
Essential Data Analytics, Data Science, and AI A Practical Guide for a Data-Driven World
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security
Data Science 2 Books in 1 Python Programming & Python for Data Science, The Ultimate Guide to Learn Machine Learning and Predictive Analytics from Scratch with Hands-On Projects
Python Data Science: Deep Learning Guide for Beginners with Data Science. Python Programming and Crush Course.