BOOKS - Software Engineering for Data Scientists From Notebooks to Scalable Systems (...
Software Engineering for Data Scientists From Notebooks to Scalable Systems (Final) - Catherine Nelson 2024 PDF | EPUB O’Reilly Media, Inc. BOOKS
ECO~14 kg CO²

1 TON

Views
993237

 
Software Engineering for Data Scientists From Notebooks to Scalable Systems (Final)
Author: Catherine Nelson
Year: 2024
Pages: 258
Format: PDF | EPUB
File size: 11.7 MB
Language: ENG



Software Engineering for Data Scientists From Notebooks to Scalable Systems Final In today's fast-paced technological world, it is essential to understand the process of technology evolution and its impact on humanity. As data science continues to play a vital role in shaping our society, it is crucial for data scientists to develop a personal paradigm for perceiving the technological process of developing modern knowledge. This paradigm can serve as the basis for the survival of humanity and the unification of people in a warring state. The book "Software Engineering for Data Scientists: From Notebooks to Scalable Systems" provides a comprehensive guide to the practical application of software engineering principles in data science projects. The author, a seasoned data scientist, emphasizes the importance of writing reproducible and robust code, highlighting the significance of this skill in the success of any data science project. With a focus on Python, the most popular programming language for data science, the book offers a thorough understanding of best practices in software engineering and their relevance to data science.
Разработка программного обеспечения для специалистов по обработке данных От ноутбуков до масштабируемых систем Финал В современном быстро развивающемся технологическом мире важно понимать процесс эволюции технологий и его влияние на человечество. Поскольку наука о данных продолжает играть жизненно важную роль в формировании нашего общества, для ученых, занимающихся данными, крайне важно разработать личную парадигму восприятия технологического процесса развития современных знаний. Эта парадигма может служить основой для выживания человечества и объединения людей в воюющем государстве. Книга «Software Engineering for Data Scientists: From Notebooks to Scalable Systems» содержит исчерпывающее руководство по практическому применению принципов программной инженерии в проектах по изучению данных. Автор, опытный ученый в области данных, подчеркивает важность написания воспроизводимого и надежного кода, подчеркивая важность этого навыка в успехе любого проекта в области науки о данных. С акцентом на Python, самый популярный язык программирования для науки о данных, книга предлагает глубокое понимание лучших практик в программной инженерии и их соответствия науке о данных.
Développement de logiciels pour les professionnels du traitement des données Des ordinateurs portables aux systèmes évolutifs Finale Dans le monde technologique en évolution rapide d'aujourd'hui, il est important de comprendre le processus d'évolution de la technologie et son impact sur l'humanité. Étant donné que la science des données continue de jouer un rôle essentiel dans l'édification de notre société, il est essentiel que les scientifiques qui s'occupent des données élaborent un paradigme personnel de la perception du processus technologique du développement des connaissances modernes. Ce paradigme peut servir de base à la survie de l'humanité et à l'unification des hommes dans un État en guerre. livre « Software Engineering for Data Scientists : From Notebooks to Scalable Systems » fournit un guide complet sur l'application pratique des principes de l'ingénierie logicielle dans les projets d'étude des données. L'auteur, un scientifique expérimenté dans le domaine des données, souligne l'importance d'écrire un code reproductible et fiable, soulignant l'importance de ce savoir-faire dans la réussite de tout projet de science des données. En mettant l'accent sur Python, le langage de programmation le plus populaire pour la science des données, le livre offre une compréhension approfondie des meilleures pratiques en ingénierie logicielle et de leur conformité à la science des données.
Desarrollo de software para profesionales de procesamiento de datos Desde portátiles hasta sistemas escalables Final En el mundo tecnológico en rápida evolución de hoy, es importante comprender el proceso de evolución de la tecnología y su impacto en la humanidad. A medida que la ciencia de los datos continúa desempeñando un papel vital en la formación de nuestra sociedad, es fundamental que los científicos de datos desarrollen un paradigma personal de percepción del proceso tecnológico del desarrollo del conocimiento moderno. Este paradigma puede servir de base para la supervivencia de la humanidad y la unificación de los seres humanos en un Estado en guerra. libro «Software Engineering for Data Scientists: From Notebooks to Scalable Systems» proporciona una guía exhaustiva para la aplicación práctica de los principios de ingeniería de software en proyectos de estudio de datos. autor, un experimentado científico de datos, destaca la importancia de escribir un código reproducible y fiable, destacando la importancia de esta habilidad en el éxito de cualquier proyecto de ciencia de datos. Con un enfoque en Python, el lenguaje de programación más popular para la ciencia de datos, el libro ofrece una comprensión profunda de las mejores prácticas en ingeniería de software y su conformidad con la ciencia de datos.
Software-Entwicklung für Datenspezialisten Von Notebooks bis zu skalierbaren Systemen Finale In der heutigen schnelllebigen technologischen Welt ist es wichtig, den Prozess der technologischen Evolution und ihre Auswirkungen auf die Menschheit zu verstehen. Da die Datenwissenschaft weiterhin eine entscheidende Rolle bei der Gestaltung unserer Gesellschaft spielt, ist es für Datenwissenschaftler von entscheidender Bedeutung, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens zu entwickeln. Dieses Paradigma kann als Grundlage für das Überleben der Menschheit und die Vereinigung der Menschen in einem kriegführenden Staat dienen. Das Buch „Software Engineering for Data Scientists: From Notebooks to Scalable Systems“ bietet eine umfassende Anleitung zur praktischen Anwendung von Software-Engineering-Prinzipien in Datenforschungsprojekten. Der Autor, ein erfahrener Datenwissenschaftler, betont die Bedeutung des Schreibens von reproduzierbarem und zuverlässigem Code und betont die Bedeutung dieser Fähigkeit für den Erfolg jedes datenwissenschaftlichen Projekts. Mit einem Schwerpunkt auf Python, der beliebtesten Programmiersprache für Data Science, bietet das Buch einen tiefen Einblick in Best Practices im Software Engineering und deren Relevanz für Data Science.
''
Dizüstü Bilgisayarlardan Ölçeklenebilir stemlere Veri Bilimcileri İçin Yazılım Geliştirme Oyun Sonu Günümüzün hızla gelişen teknoloji dünyasında, teknolojinin evrimini ve insanlık üzerindeki etkisini anlamak önemlidir. Veri bilimi toplumumuzu şekillendirmede hayati bir rol oynamaya devam ettikçe, veri bilimcilerinin modern bilgiyi geliştirme teknolojik sürecinin algılanması için kişisel bir paradigma geliştirmeleri çok önemlidir. Bu paradigma, insanlığın hayatta kalması ve insanların savaşan bir durumda birleşmesi için temel oluşturabilir. Veri Bilimcileri için Yazılım Mühendisliği: Dizüstü Bilgisayarlardan Ölçeklenebilir stemlere, veri bilimi projelerinde yazılım mühendisliği ilkelerinin pratik uygulamasına kapsamlı bir rehber sunar. Deneyimli bir veri bilimcisi olan yazar, tekrarlanabilir ve güvenilir kod yazmanın önemini vurgulayarak, bu becerinin herhangi bir veri bilimi projesinin başarısındaki önemini vurgulamaktadır. Veri bilimi için en popüler programlama dili olan Python'a odaklanan kitap, yazılım mühendisliğindeki en iyi uygulamaların ve bunların veri bilimi ile ilgisinin derinlemesine anlaşılmasını sağlar.
تطوير البرمجيات لعلماء البيانات من أجهزة الكمبيوتر المحمولة إلى نهاية لعبة الأنظمة القابلة للتطوير في عالم التكنولوجيا سريع التطور اليوم، من المهم فهم تطور التكنولوجيا وتأثيرها على البشرية. مع استمرار علم البيانات في لعب دور حيوي في تشكيل مجتمعنا، من الضروري لعلماء البيانات تطوير نموذج شخصي لتصور العملية التكنولوجية لتطوير المعرفة الحديثة. يمكن أن يكون هذا النموذج بمثابة أساس لبقاء البشرية وتوحيد الناس في دولة متحاربة. تقدم هندسة البرمجيات لعلماء البيانات: من دفاتر الملاحظات إلى الأنظمة القابلة للتطوير دليلاً شاملاً للتطبيق العملي لمبادئ هندسة البرمجيات في مشاريع علوم البيانات. يؤكد المؤلف، وهو عالم بيانات متمرس، على أهمية كتابة شفرة قابلة للتكرار وموثوقة، مما يسلط الضوء على أهمية هذه المهارة في نجاح أي مشروع لعلوم البيانات. مع التركيز على Python، لغة البرمجة الأكثر شيوعًا لعلوم البيانات، يقدم الكتاب فهمًا عميقًا لأفضل الممارسات في هندسة البرمجيات وصلتها بعلوم البيانات.

You may also be interested in:

Software Engineering for Data Scientists
Software Engineering for Data Scientists: From Notebooks to Scalable Systems
Software Engineering for Data Scientists From Notebooks to Scalable Systems (Final)
Software Engineering for Data Scientists From Notebooks to Scalable Systems (Final)
Feature Engineering for Machine Learning Principles and Techniques for Data Scientists
Software Engineering and Data Science
Perspectives on Data Science for Software Engineering
Data Analytics for Drilling Engineering: Theory, Algorithms, Experiments, Software
Engineering Software Products An Introduction to Modern Software Engineering, Global Edition
Fundamentals of Software Engineering Designed to provide an insight into the software engineering concepts
Ultimate Data Engineering with Databricks Develop Scalable Data Pipelines Using Data Engineering|s Core Tenets Such as Delta Tables, Ingestion, Transformation, Security, and Scalability
Ultimate Data Engineering with Databricks Develop Scalable Data Pipelines Using Data Engineering|s Core Tenets Such as Delta Tables, Ingestion, Transformation, Security, and Scalability
Docker Tutorial for Beginners: Learn Programming, Containers, Data Structures, Software Engineering, and Coding
Recent Advances in Data and Algorithms for e-Government (Artificial Intelligence-Enhanced Software and Systems Engineering Book 5)
Engineering Software Products An Introduction to Modern Software Engineering
Research Software Engineering: A Guide to the Open Source Ecosystem (Chapman and Hall CRC Data Science Series)
Ultimate Azure Data Engineering Build Robust Data Engineering Systems on Azure with SQL, ETL, Data Modeling, and Power BI for Business Insights and Crack Azure Certifications
Ultimate Azure Data Engineering Build Robust Data Engineering Systems on Azure with SQL, ETL, Data Modeling, and Power BI for Business Insights and Crack Azure Certifications
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Strategic Software Engineering Software Engineering Beyond the Code
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Designing Software Architectures: A Practical Approach (SEI Series in Software Engineering)
Re-Engineering Software How to Re-Use Programming to Build New, State-of-the-Art Software, Second Edition
Re-Engineering Software How to Re-Use Programming to Build New, State-of-the-Art Software, Second Edition
Re-Engineering Software: How to Re-Use Programming to Build New, State-of-the-Art Software by Roy Rada (1999-05-24)
Knowledge-Based Software Engineering Proceedings of the Tenth Joint Conference on Knowledge-Based Software Engineering
Effective Data Science Infrastructure How to Make Data Scientists Productive
Effective Data Science Infrastructure How to make data scientists productive (MEAP Version 7)
Software Engineering and Methodology for Emerging Domains 15th National Software Application Conference, NASAC 2016
Azure Data Engineering Cookbook: Get well versed in various data engineering techniques in Azure using this recipe-based guide, 2nd Edition
Software Engineering Architecture-driven Software Development
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
The Electrical Engineering Handbook Computers, Software Engineering, and Digital Devices, Third Edition
The Best Python Programming Step-By-Step Beginners Guide: Easily Master Software engineering with Machine Learning, Data Structures, Syntax, Django Object-Oriented Programming, and AI application
Learning Pandas 2.0: A Comprehensive Guide to Data Manipulation and Analysis for Data Scientists and Machine Learning Professionals
Data-Centric Security in Software Defined Networks (SDN) (Studies in Big Data, 149)
Software Quality. Model-Based Approaches for Advanced Software and Systems Engineering: 6th International Conference, SWQD 2014, Vienna, Austria, … in Business Information Processing, 166)