BOOKS - Software Engineering for Data Scientists: From Notebooks to Scalable Systems
Software Engineering for Data Scientists: From Notebooks to Scalable Systems - Catherine Nelson June 4, 2024 PDF  BOOKS
ECO~19 kg CO²

3 TON

Views
82301

Telegram
 
Software Engineering for Data Scientists: From Notebooks to Scalable Systems
Author: Catherine Nelson
Year: June 4, 2024
Format: PDF
File size: PDF 1.4 MB
Language: English



Pay with Telegram STARS
Book Description: Software Engineering for Data Scientists: From Notebooks to Scalable Systems is a comprehensive guide that provides a systematic approach to software engineering for data scientists. The book covers the entire software development lifecycle, from notebooks to scalable systems, and equips readers with the skills and knowledge necessary to build robust, maintainable, and scalable software systems. It emphasizes the importance of understanding the process of technology evolution and the need to develop a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. The book begins by introducing the basics of software engineering and its importance in data science, followed by an overview of the software development lifecycle and the various stages involved in it. It then delves into the details of each stage, including requirements gathering, design, implementation, testing, and deployment, providing practical examples and case studies to illustrate each concept. The book also covers topics such as version control, testing, and debugging, and discusses the challenges of scaling up software systems and the importance of continuous integration and delivery. Throughout the book, the authors emphasize the need to understand the underlying principles of software engineering and their application to real-world scenarios. They also provide tips on how to approach software development in a systematic and methodical way, and how to avoid common pitfalls and mistakes that can lead to project failure. The book concludes with a discussion on the future of software engineering and its role in shaping the future of data science and technology. Book Outline: I.
Software Engineering for Data Scientists: From Notebook to Scalable Systems - это всеобъемлющее руководство, которое обеспечивает системный подход к разработке программного обеспечения для специалистов по анализу данных. Книга охватывает весь жизненный цикл разработки программного обеспечения, от ноутбуков до масштабируемых систем, и предоставляет читателям навыки и знания, необходимые для создания надежных, обслуживаемых и масштабируемых программных систем. В ней подчеркивается важность понимания процесса эволюции технологий и необходимость выработки личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. Книга начинается с ознакомления с основами инженерии программного обеспечения и его важностью в науке о данных, после чего следует обзор жизненного цикла разработки программного обеспечения и различных вовлеченных в него этапов. Затем он углубляется в детали каждого этапа, включая сбор требований, разработку, внедрение, тестирование и развертывание, предоставляя практические примеры и тематические исследования для иллюстрации каждой концепции. В книге также рассматриваются такие темы, как контроль версий, тестирование и отладка, а также обсуждаются проблемы масштабирования программных систем и важность непрерывной интеграции и доставки. На протяжении всей книги авторы подчеркивают необходимость понимания основополагающих принципов программной инженерии и их применения к реальным сценариям. Они также дают советы о том, как системно и методично подходить к разработке программного обеспечения и как избежать распространенных подводных камней и ошибок, которые могут привести к провалу проекта. Книга завершается обсуждением будущего программной инженерии и ее роли в формировании будущего науки о данных и технологий. Очерк книги: И.
Software Engineering for Data Scientists : From Not....to Scalable Systems est un guide complet qui fournit une approche systémique du développement de logiciels pour les analystes de données. livre couvre tout le cycle de vie du développement logiciel, des ordinateurs portables aux systèmes évolutifs, et fournit aux lecteurs les compétences et les connaissances nécessaires pour construire des systèmes logiciels fiables, maintenus et évolutifs. Il souligne l'importance de comprendre l'évolution des technologies et la nécessité d'élaborer un paradigme personnel pour la perception du processus technologique du développement des connaissances modernes comme base de la survie de l'humanité et de la survie de l'unification des gens dans un État en guerre. livre commence par une présentation des bases de l'ingénierie logicielle et de son importance dans la science des données, suivie d'un aperçu du cycle de vie du développement logiciel et des différentes étapes impliquées. Il est ensuite approfondi dans les détails de chaque étape, y compris la collecte des exigences, le développement, la mise en œuvre, les tests et le déploiement, en fournissant des exemples pratiques et des études de cas pour illustrer chaque concept. livre traite également de sujets tels que le contrôle de version, les tests et le débogage, ainsi que des problèmes de mise à l'échelle des systèmes logiciels et de l'importance de l'intégration et de la livraison continues. Tout au long du livre, les auteurs soulignent la nécessité de comprendre les principes fondamentaux de l'ingénierie logicielle et de leur application à des scénarios réels. Ils fournissent également des conseils sur la façon d'aborder le développement de logiciels de manière systémique et méthodique et comment éviter les pièges et les erreurs courants qui peuvent conduire à l'échec du projet. livre se termine par une discussion sur l'avenir de l'ingénierie logicielle et son rôle dans l'avenir de la science et de la technologie des données. Étude du livre : I.
Software Engineering for Data Scientists: From Notebook to Scalable Systems es una guía integral que proporciona un enfoque de sistema para el desarrollo de software para profesionales de análisis de datos. libro cubre todo el ciclo de vida del desarrollo de software, desde portátiles hasta sistemas escalables, y proporciona a los lectores las habilidades y los conocimientos necesarios para crear sistemas de software confiables, atendidos y escalables. Destaca la importancia de comprender el proceso de evolución de la tecnología y la necesidad de desarrollar un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base para la supervivencia de la humanidad y la supervivencia de la unión de los seres humanos en un Estado en guerra. libro comienza con una introducción a los fundamentos de la ingeniería de software y su importancia en la ciencia de datos, seguido de una revisión del ciclo de vida del desarrollo de software y las diferentes etapas involucradas en él. A continuación, se profundiza en los detalles de cada etapa, incluyendo la recopilación de requisitos, desarrollo, implementación, pruebas e implementación, proporcionando ejemplos prácticos y estudios de casos para ilustrar cada concepto. libro también aborda temas como el control de versiones, las pruebas y la depuración, así como los desafíos de escalar los sistemas de software y la importancia de la integración y entrega continuas. A lo largo del libro, los autores destacan la necesidad de comprender los principios fundamentales de la ingeniería programática y su aplicación a escenarios reales. También ofrecen consejos sobre cómo abordar el desarrollo de software de forma sistemática y metódica y cómo evitar los escollos y errores comunes que pueden llevar al fracaso del proyecto. libro concluye con una discusión sobre el futuro de la ingeniería de software y su papel en la formación del futuro de la ciencia de datos y tecnología. Ensayo del libro: I.
Software Engineering for Data Scientists: From Notebook to Scalable Systems è una guida completa che fornisce un approccio di sistema allo sviluppo di software per l'analisi dei dati. Il libro comprende l'intero ciclo di vita dello sviluppo software, dai notebook ai sistemi scalabili, fornendo ai lettori le competenze e le conoscenze necessarie per creare software affidabili, servibili e scalabili. Sottolinea l'importanza di comprendere l'evoluzione della tecnologia e la necessità di sviluppare un paradigma personale per la percezione del processo tecnologico di sviluppo della conoscenza moderna come base della sopravvivenza dell'umanità e della sopravvivenza dell'unione delle persone in uno stato in guerra. Il libro inizia con la conoscenza delle basi dell'ingegneria del software e della sua importanza nella scienza dei dati, seguito da una panoramica del ciclo di vita dello sviluppo del software e delle varie fasi coinvolte. Viene quindi approfondito nei dettagli di ogni fase, tra cui raccolta dei requisiti, sviluppo, implementazione, test e implementazione, fornendo esempi pratici e studi di caso per illustrare ogni concetto. Il libro affronta anche argomenti quali il controllo delle versioni, il test e il debug, nonché i problemi legati alla scalabilità dei sistemi software e l'importanza dell'integrazione continua e della distribuzione. Durante tutto il libro, gli autori sottolineano la necessità di comprendere i principi fondamentali dell'ingegneria programmatica e applicarli a scenari reali. Forniscono anche suggerimenti su come adottare il software in modo sistemico e metodico e come evitare pietre sottomarine comuni e errori che possono portare al fallimento del progetto. Il libro si conclude con un dibattito sul futuro dell'ingegneria software e sul suo ruolo nella formazione del futuro della scienza dei dati e della tecnologia. L'articolo del libro, E.
Software Engineering for Data Scientists: From Notebook to Scalable Systems ist ein umfassendes Handbuch, das Datenwissenschaftlern einen systematischen Ansatz in der Softwareentwicklung bietet. Das Buch deckt den gesamten benszyklus der Softwareentwicklung ab, vom Laptop bis zum skalierbaren System, und vermittelt den sern die Fähigkeiten und das Wissen, die sie benötigen, um zuverlässige, wartbare und skalierbare Softwaresysteme zu erstellen. Es betont die Bedeutung des Verständnisses des Prozesses der technologischen Evolution und die Notwendigkeit, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens als Grundlage für das Überleben der Menschheit und das Überleben der Vereinigung der Menschen in einem kriegführenden Staat zu entwickeln. Das Buch beginnt mit einer Einführung in die Grundlagen des Software-Engineerings und seine Bedeutung in der Datenwissenschaft, gefolgt von einem Überblick über den benszyklus der Softwareentwicklung und die verschiedenen Phasen, die daran beteiligt sind. Es geht dann tiefer in die Details jeder Phase, einschließlich der Erfassung von Anforderungen, der Entwicklung, Implementierung, des Testens und der Bereitstellung, und liefert praktische Beispiele und Fallstudien, um jedes Konzept zu veranschaulichen. Das Buch befasst sich auch mit Themen wie Versionskontrolle, Testen und Debugging und diskutiert die Herausforderungen der Skalierung von Softwaresystemen und die Bedeutung der kontinuierlichen Integration und Bereitstellung. Während des gesamten Buches betonen die Autoren die Notwendigkeit, die grundlegenden Prinzipien des Software-Engineerings und ihre Anwendung auf reale Szenarien zu verstehen. e geben auch Tipps, wie man systematisch und methodisch an die Softwareentwicklung herangeht und wie man die üblichen Fallstricke und Fehler vermeidet, die zum Scheitern eines Projekts führen können. Das Buch schließt mit einer Diskussion über die Zukunft des Software-Engineerings und seine Rolle bei der Gestaltung der Zukunft von Datenwissenschaft und Technologie. Aufsatz des Buches: I.
''
Veri Bilimcileri için Yazılım Mühendisliği: Not Defterinden Ölçeklenebilir stemlere, veri bilimcileri için yazılım geliştirmeye sistematik bir yaklaşım sağlayan kapsamlı bir kılavuzdur. Kitap, dizüstü bilgisayarlardan ölçeklenebilir sistemlere kadar tüm yazılım geliştirme yaşam döngüsünü kapsar ve okuyuculara güvenilir, sürdürülebilir ve ölçeklenebilir yazılım sistemleri oluşturmak için ihtiyaç duydukları bilgi ve becerileri sağlar. Teknolojinin evrim sürecini anlamanın önemini ve modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigma geliştirme ihtiyacını, insanlığın hayatta kalması ve savaşan bir devlette insanların birleşmesinin hayatta kalması için temel olarak vurgulamaktadır. Kitap, yazılım mühendisliğinin temellerine ve veri bilimindeki önemine bir giriş ile başlar, ardından yazılım geliştirme yaşam döngüsüne ve ilgili çeşitli aşamalara genel bir bakış izler. Daha sonra, gereksinim toplama, geliştirme, uygulama, test etme ve dağıtım dahil olmak üzere her bir aşamanın ayrıntılarına girer ve her bir kavramı göstermek için vaka çalışmaları ve vaka çalışmaları sağlar. Kitap ayrıca sürüm kontrolü, test etme ve hata ayıklama gibi konuları da kapsar ve yazılım sistemlerini ölçeklendirmenin zorluklarını ve sürekli entegrasyon ve teslimatın önemini tartışır. Kitap boyunca, yazarlar yazılım mühendisliğinin temel ilkelerini ve gerçek dünya senaryolarına uygulamalarını anlama ihtiyacını vurgulamaktadır. Ayrıca, yazılım geliştirmeye sistematik ve metodik olarak nasıl yaklaşılacağı ve proje başarısızlığına yol açabilecek yaygın tuzaklardan ve hatalardan nasıl kaçınılacağı konusunda tavsiyelerde bulunurlar. Kitap, yazılım mühendisliğinin geleceği ve veri bilimi ve teknolojisinin geleceğini şekillendirmedeki rolü hakkında bir tartışma ile sona eriyor. Kitabın Denemesi: I.
數據科學家軟件工程:從筆記本到可擴展系統是一本全面的指南,為數據分析專業人員提供了一種系統化的軟件開發方法。該書涵蓋了從筆記本電腦到可擴展系統的整個軟件開發生命周期,並為讀者提供了構建可靠,可維護和可擴展的軟件系統所需的技能和知識。它強調了理解技術演變進程的重要性,並強調有必要制定個人範式,將發展現代知識的技術進程視為人類生存和人類在交戰國團結的基礎。本書首先介紹了軟件工程的基本原理及其在數據科學中的重要性,然後回顧了軟件開發的生命周期及其涉及的各個階段。然後,他深入研究每個階段的細節,包括需求收集,開發,實施,測試和部署,並提供實例和案例研究以說明每個概念。該書還探討了版本控制,測試和調試等主題,並討論了擴展軟件系統的挑戰以及持續集成和交付的重要性。在整個書中,作者強調需要了解軟件工程的基本原理及其在現實世界中的應用。他們還提供有關如何系統和有條不紊地處理軟件開發以及如何避免可能導致項目失敗的常見陷阱和錯誤的建議。該書最後討論了軟件工程的未來及其在塑造數據科學和技術未來的作用。該書的文章:I.

You may also be interested in:

Software Engineering for Data Scientists
Software Engineering for Data Scientists: From Notebooks to Scalable Systems
Software Engineering for Data Scientists From Notebooks to Scalable Systems (Final)
Software Engineering for Data Scientists From Notebooks to Scalable Systems (Final)
Feature Engineering for Machine Learning Principles and Techniques for Data Scientists
Software Engineering and Data Science
Perspectives on Data Science for Software Engineering
Data Analytics for Drilling Engineering: Theory, Algorithms, Experiments, Software
Fundamentals of Software Engineering Designed to provide an insight into the software engineering concepts
Engineering Software Products An Introduction to Modern Software Engineering, Global Edition
Ultimate Data Engineering with Databricks Develop Scalable Data Pipelines Using Data Engineering|s Core Tenets Such as Delta Tables, Ingestion, Transformation, Security, and Scalability
Ultimate Data Engineering with Databricks Develop Scalable Data Pipelines Using Data Engineering|s Core Tenets Such as Delta Tables, Ingestion, Transformation, Security, and Scalability
Docker Tutorial for Beginners: Learn Programming, Containers, Data Structures, Software Engineering, and Coding
Recent Advances in Data and Algorithms for e-Government (Artificial Intelligence-Enhanced Software and Systems Engineering Book 5)
Engineering Software Products An Introduction to Modern Software Engineering
Research Software Engineering: A Guide to the Open Source Ecosystem (Chapman and Hall CRC Data Science Series)
Ultimate Azure Data Engineering Build Robust Data Engineering Systems on Azure with SQL, ETL, Data Modeling, and Power BI for Business Insights and Crack Azure Certifications
Ultimate Azure Data Engineering Build Robust Data Engineering Systems on Azure with SQL, ETL, Data Modeling, and Power BI for Business Insights and Crack Azure Certifications
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Strategic Software Engineering Software Engineering Beyond the Code
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Designing Software Architectures: A Practical Approach (SEI Series in Software Engineering)
Re-Engineering Software How to Re-Use Programming to Build New, State-of-the-Art Software, Second Edition
Re-Engineering Software How to Re-Use Programming to Build New, State-of-the-Art Software, Second Edition
Re-Engineering Software: How to Re-Use Programming to Build New, State-of-the-Art Software by Roy Rada (1999-05-24)
Knowledge-Based Software Engineering Proceedings of the Tenth Joint Conference on Knowledge-Based Software Engineering
Effective Data Science Infrastructure How to Make Data Scientists Productive
Effective Data Science Infrastructure How to make data scientists productive (MEAP Version 7)
Software Engineering and Methodology for Emerging Domains 15th National Software Application Conference, NASAC 2016
Azure Data Engineering Cookbook: Get well versed in various data engineering techniques in Azure using this recipe-based guide, 2nd Edition
Software Engineering Architecture-driven Software Development
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
The Electrical Engineering Handbook Computers, Software Engineering, and Digital Devices, Third Edition
The Best Python Programming Step-By-Step Beginners Guide: Easily Master Software engineering with Machine Learning, Data Structures, Syntax, Django Object-Oriented Programming, and AI application
Learning Pandas 2.0: A Comprehensive Guide to Data Manipulation and Analysis for Data Scientists and Machine Learning Professionals
Data-Centric Security in Software Defined Networks (SDN) (Studies in Big Data, 149)
Software Quality. Model-Based Approaches for Advanced Software and Systems Engineering: 6th International Conference, SWQD 2014, Vienna, Austria, … in Business Information Processing, 166)