BOOKS - Probabilistic Numerics: Computation as Machine Learning
Probabilistic Numerics: Computation as Machine Learning - Philipp Hennig October 13, 2022 PDF  BOOKS
ECO~29 kg CO²

3 TON

Views
885769

Telegram
 
Probabilistic Numerics: Computation as Machine Learning
Author: Philipp Hennig
Year: October 13, 2022
Format: PDF
File size: PDF 12 MB
Language: English



Book Description: Probabilistic Numerics Computation as Machine Learning Author: Philipp Hennig October 13, 2022 Pages: Genre: Non-Fiction, Technology, Artificial Intelligence, Computer Science, Statistics, Applied Mathematics Synopsis: In this groundbreaking book, Philipp Hennig delves into the fascinating world of probabilistic numerics computation and its connection to machine learning. The author presents a comprehensive overview of the process of technology evolution and the need for developing a personal paradigm to perceive the technological advancements in modern knowledge. The book explores the possibility of utilizing probabilistic numerical computation as a basis for the survival of humanity and the unification of people in a warring state. The text begins by introducing the concept of probabilistic numerical computation and its relationship to machine learning.
Вероятностные численные вычисления как машинное обучение Автор: Филипп Хенниг 13 октября 2022 г. Страницы: Жанр: нон-фикшн, технологии, искусственный интеллект, информатика, статистика, сводка по прикладной математике: В этой новаторской книге Филипп Хенниг углубляется в увлекательный мир вероятностное численное вычисление и его связь с машинным обучением. Автор представляет всесторонний обзор процесса эволюции технологий и необходимости разработки личностной парадигмы восприятия технологических достижений в современных знаниях. В книге исследуется возможность использования вероятностных численных вычислений в качестве основы для выживания человечества и объединения людей в воюющем государстве. Текст начинается с введения понятия вероятностных численных вычислений и его отношения к машинному обучению.
Cálculo numérico probabilístico como aprendizaje automático Autor: Philip Hennig 13 de octubre de 2022 Páginas: Género: no ficción, tecnología, inteligencia artificial, informática, estadística, resumen de matemáticas aplicadas: En este libro pionero, Philip Hennig profundiza en el fascinante mundo de la probabilidad numérica computación y su relación con el aprendizaje automático. autor presenta una visión global del proceso de evolución de la tecnología y la necesidad de desarrollar un paradigma personal para percibir los avances tecnológicos en el conocimiento actual. libro explora la posibilidad de utilizar la computación numérica probabilística como base para la supervivencia de la humanidad y la unificación de los seres humanos en un estado en guerra. texto comienza introduciendo el concepto de cálculo numérico probabilístico y su relación con el aprendizaje automático.
''
Philipp Hennigによる機械学習としての確率的数値計算202210月13日ページ:ジャンル:ノンフィクション、テクノロジー、人工知能、コンピュータサイエンス、統計、応用数学の概要:この画期的な本では、Philipp Hennig確率的数値計算の魅力的な世界と機械学習との関係を掘り下げます。著者は、技術の進化のプロセスと現代の知識における技術の進歩の認識のための個人的なパラダイムを開発する必要性の包括的な概要を提示します。この本は、確率的な数値計算を人類の生存と戦争状態における人々の統一の基礎とする可能性を探求している。テキストは、確率的数値計算の概念と機械学習との関係を紹介することから始まります。

You may also be interested in:

Probabilistic Numerics: Computation as Machine Learning
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Probabilistic Machine Learning for Finance
Probabilistic Machine Learning An Introduction
Machine Learning: A Probabilistic Perspective
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Distributional Reinforcement Learning (Adaptive Computation and Machine Learning)
Probabilistic Machine Learning Advanced Topics
Probabilistic Machine Learning for Civil Engineers (The MIT Press)
Probabilistic Machine Learning for Finance and Investing: A Primer to Generative AI with Python
Machine Learning and Probabilistic Graphical Models for Decision Support Systems
Machine Learning and Metaheuristic Computation
Machine Learning and Metaheuristic Computation
Probabilistic Machine Learning for Finance and Investing A Primer to Generative AI with Python (Final)
Knowledge Graphs Fundamentals, Techniques, and Applications (Adaptive Computation and Machine Learning series)
Handbook of Evolutionary Machine Learning (Genetic and Evolutionary Computation)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning