BOOKS - Data Science: Theory, Algorithms, and Applications (Transactions on Computer ...
Data Science: Theory, Algorithms, and Applications (Transactions on Computer Systems and Networks) - Gyanendra K. Verma August 20, 2021 PDF  BOOKS
ECO~18 kg CO²

3 TON

Views
940410

 
Data Science: Theory, Algorithms, and Applications (Transactions on Computer Systems and Networks)
Author: Gyanendra K. Verma
Year: August 20, 2021
Format: PDF
File size: PDF 132 MB
Language: English



Book Description: Data Science Theory Algorithms and Applications Transactions on Computer Systems and Networks Author: Gyanendra K. Verma August 20, 2021 Pages: Summary: In this book, we explore the evolution of technology and its impact on modern knowledge, highlighting the need for a personal paradigm to understand the technological process and its implications for human survival and unity in a warring world. We delve into the advancements in deep learning and its applications in multimedia, discussing the challenges and opportunities presented by this rapidly evolving field. The book is designed for readers with a basic understanding of deep learning, providing an in-depth look at the various architectures and their performance in standard evaluations. However, the complexity of deep neural networks can make it difficult to comprehend their learning processes, leaving room for uncertainty and exploration. By the end of the book, readers will gain a deeper understanding of different deep learning approaches, pretrained models, and familiarity with the implementation of various deep learning algorithms using popular frameworks and libraries.
''
Gyanendra K。 Vermaによるコンピュータシステムとネットワーク上のデータサイエンス理論アルゴリズムとアプリケーションのトランザクション20 8月2021ページ: 出版社:[Insert Publisher]要約:この本では、技術の進化と現在の知識への影響を探り、技術プロセスを理解するための個人的なパラダイムの必要性と、戦争中の世界での人間の生存と団結のためのその結果を強調しています。私たちは、ディープラーニングの進歩とマルチメディアへの応用について掘り下げ、この急速に進化する分野によって提示される課題と機会について議論します。この本は、ディープラーニングの基本的な理解を持つ読者を対象としています。しかし、深いニューラルネットワークの複雑さは、学習プロセスを理解しにくく、不確実性や探索の余地を残します。本の終わりまでに、読者は、さまざまなディープラーニングのアプローチ、事前に訓練されたモデル、および一般的なフレームワークやライブラリを使用したさまざまなディープラーニングアルゴリズムの実装に精通していることをより深く理解することができます。

You may also be interested in:

Data Science: Theory, Algorithms, and Applications (Transactions on Computer Systems and Networks)
Data Science Theory, Analysis and Applications
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Evolutionary Data Clustering: Algorithms and Applications (Algorithms for Intelligent Systems)
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security
Hands-On Data Structures and Algorithms with Python: Store, manipulate, and access data effectively and boost the performance of your applications, 3rd Edition
Contemporary Algorithms Theory and Applications, Volume IV
Contemporary Algorithms: Theory and Applications. Volume I
Contemporary Algorithms Theory and Applications, Volume IV
Contemporary Algorithms: Theory and Applications Volume II
Coding Theory - Algorithms, Architectures, and Applications
Contemporary Algorithms Theory and Applications, Volume I-IV
Building Software for Simulation Theory and Algorithms, with Applications in C++
Optimum-Path Forest: Theory, Algorithms, and Applications
Contemporary Algorithms Theory and Applications Volume III
Distributed Source Coding Theory, Algorithms and Applications
Graph Theory An Introduction to Proofs, Algorithms, and Applications
Contemporary Algorithms Theory and Applications Volume III
Advanced Applications of Python Data Structures and Algorithms
Practical Applications of Data Processing, Algorithms, and Modeling
Data Structures and Algorithms in Golang Develop Better Applications with Go
Practical Applications of Data Processing, Algorithms, and Modeling
Practical Applications of Data Processing, Algorithms, and Modeling
Advanced Applications of Python Data Structures and Algorithms
Graph Algorithms for Data Science
Blind Equalization in Neural Networks Theory, Algorithms and Applications
Classical and Discrete Differential Geometry Theory, Applications and Algorithms
Analytics in a Big Data World The Essential Guide to Data Science and its Applications
Agile Data Science Building Data Analytics Applications with Hadoop
Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
Data Analytics for Drilling Engineering: Theory, Algorithms, Experiments, Software
Frame Theory in Data Science (Advances in Science, Technology and Innovation)
Multisensor Data Fusion From Algorithms and Architectural Design to Applications
Beginning Mathematica and Wolfram for Data Science: Applications in Data Analysis, Machine Learning, and Neural Networks
Nature-Inspired Computation and Swarm Intelligence Algorithms, Theory and Applications
Data Engineering and Data Science Concepts and Applications
Data Engineering and Data Science: Concepts and Applications
Building Data Science Applications with FastAPI: Develop, manage, and deploy efficient machine learning applications with Python
Algorithms & Data Structures The Science Of Computing