BOOKS - Advanced data management For SQL, NoSQL, cloud and distributed databases
Advanced data management For SQL, NoSQL, cloud and distributed databases - Adele Kuzmiakova 2024 PDF Arcler Press BOOKS
ECO~15 kg CO²

1 TON

Views
24348

Telegram
 
Advanced data management For SQL, NoSQL, cloud and distributed databases
Author: Adele Kuzmiakova
Year: 2024
Pages: 352
Format: PDF
File size: 48.9 MB
Language: ENG



Pay with Telegram STARS
The book "Advanced Data Management for SQL, NoSQL, Cloud, and Distributed Databases" provides a comprehensive overview of the current state of data management technology, including its history, trends, and future directions. The book covers various aspects of data management, including database systems, data warehousing, data mining, and big data analytics, and provides insights into the challenges and opportunities presented by emerging technologies such as cloud computing, NoSQL databases, and distributed databases. The book begins with an introduction to the basics of data management, including data modeling, data storage, and data processing, and then delves into more advanced topics such as data integration, data cleansing, and data governance. It also explores the use of machine learning and artificial intelligence in data management, and discusses the importance of data security and privacy in modern data management. One of the key themes of the book is the need to understand the process of technology evolution and how it has shaped the development of data management. The author argues that the rapid pace of technological change requires organizations to be adaptable and agile in their approach to data management, and that a personal paradigm for perceiving the technological process is essential for survival in today's fast-paced digital world. The book also emphasizes the importance of developing a personal paradigm for perceiving the technological process of developing modern knowledge, as this can help individuals and organizations stay ahead of the curve and remain competitive in an ever-changing technological landscape. The author suggests that by understanding the underlying principles of technology and its impact on society, individuals can better navigate the complex and rapidly evolving world of data management.
В книге «Advanced Data Management for SQL, NoSQL, Cloud, and Distributed Databases» представлен всесторонний обзор текущего состояния технологии управления данными, включая ее историю, тенденции и будущие направления. Книга охватывает различные аспекты управления данными, включая системы баз данных, хранение данных, интеллектуальный анализ данных и аналитику больших данных, и дает представление о проблемах и возможностях, которые представляют новые технологии, такие как облачные вычисления, базы данных NoSQL и распределенные базы данных. Книга начинается с введения в основы управления данными, включая моделирование данных, хранение и обработку данных, а затем углубляется в более сложные темы, такие как интеграция данных, очистка данных и управление данными. В нем также исследуется использование машинного обучения и искусственного интеллекта в управлении данными, а также обсуждается важность безопасности и конфиденциальности данных в современном управлении данными. Одна из ключевых тем книги - необходимость понять процесс эволюции технологий и то, как он сформировал развитие управления данными. Автор утверждает, что быстрые темпы технологических изменений требуют, чтобы организации были адаптируемыми и гибкими в своем подходе к управлению данными, и что личная парадигма восприятия технологического процесса имеет важное значение для выживания в современном быстро развивающемся цифровом мире. В книге также подчеркивается важность разработки личной парадигмы восприятия технологического процесса развития современных знаний, поскольку это может помочь отдельным лицам и организациям оставаться на опережение и сохранять конкурентоспособность в постоянно меняющемся технологическом ландшафте. Автор предполагает, что, понимая основополагающие принципы технологии и ее влияние на общество, люди могут лучше ориентироваться в сложном и быстро развивающемся мире управления данными.
''

You may also be interested in:

Advanced data management For SQL, NoSQL, cloud and distributed databases
Advanced data management For SQL, NoSQL, cloud and distributed databases
Advanced data management: For SQL, NoSQL, cloud and distributed databases
Advanced Data Management For SQL, NoSQL, Cloud and Distributed Databases
Advanced Data Management: For SQL, NoSQL, Cloud and Distributed Databases (De Gruyter Textbook)
SQL and NoSQL Databases: Models, Languages, Consistency Options and Architectures for Big Data Management
SQL and NoSQL Interview Questions Your essential guide to acing SQL and NoSQL job interviews
Python Data Persistence With SQL and NOSQL Databases
Big Data Governance Modern Data Management Principles for Hadoop, NoSQL & Big Data Analytics
Ultimate SQL Server and Azure SQL for Data Management and Modernization Full Spectrum Expert Solutions for Deploying, Securing, and Optimizing SQL Server in Linux, Cloud, and Hybrid Environments with
Ultimate SQL Server and Azure SQL for Data Management and Modernization Full Spectrum Expert Solutions for Deploying, Securing, and Optimizing SQL Server in Linux, Cloud, and Hybrid Environments with
SQL for Data Analysis Advanced Techniques for Transforming Data into Insights (Final)
SQL for Data Analysis: Advanced Techniques for Transforming Data into Insights
SQL for Data Analysis Advanced Techniques for Transforming Data into Insights (Early Release)
Leveling Up with SQL: Advanced Techniques for Transforming Data into Insights
Advanced Standard SQL Dynamic Structured Data Modeling and Hierarchical Processing
Advanced Analytics with Transact-SQL: Exploring Hidden Patterns and Rules in Your Data
Querying SQL Server. Run T-SQL Operations, Data Extraction, Data Manipulation, and Custom Queries to Deliver Simplified analytics
SQL for Data Analysis A Middle-Level Guide to Integrating SQL with Data Science Tools
SQL for Data Analysis: A Middle-Level Guide to Integrating SQL with Data Science Tools
SQL for Data Analysis A Middle-Level Guide to Integrating SQL with Data Science Tools
SQL- and NoSQL-Datenbanken
SQL The Ultimate Beginner|s Guide to Learn SQL Programming and Database Management Step-by-Step, Including MySQL, Microsoft SQL Server, Oracle and Access
Data Wrangling with SQL: A hands-on guide to manipulating, wrangling, and engineering data using SQL
Learn SQL with MySQL Retrieve and Manipulate Data Using SQL Commands with Ease
Querying Databricks with Spark SQL Leverage SQL to query and analyze Big Data for insights
Querying Databricks with Spark SQL Leverage SQL to query and analyze Big Data for insights
SQL Queries for Mere Mortals A Hands-On Guide to Data Manipulation in SQL, 4th Edition
Getting Started with SQL and Databases: Managing and Manipulating Data with SQL
Practical Graph Structures in SQL Server and Azure SQL: Enabling Deeper Insights Using Highly Connected Data
SQL for beginners The simplified beginner’s guide, to learn and understand SQL language computer programming, data analytics
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Python Programming and SQL: [7 in 1] The Most Comprehensive Coding Course from Beginners to Advanced | Master Python and SQL in Record Time with Insider Tips and Expert Secrets
NoSQL Data Models Trends and Challenges
Business Database Technology: Theories and Design Process of Relational Databases, SQL, Introduction to OLAP, Overview of NoSQL Databases
Data Stewardship An Actionable Guide to Effective Data Management and Data Governance Second Edition
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security
70-761 Querying Data with Transact-SQL MCSA SQL 2016 exam 70-761