BOOKS - Machine Learning for Industrial Applications
Machine Learning for Industrial Applications - Kolla Bhanu Prakash 2024 PDF Wiley-Scrivener BOOKS
ECO~15 kg CO²

1 TON

Views
6910

Telegram
 
Machine Learning for Industrial Applications
Author: Kolla Bhanu Prakash
Year: 2024
Pages: 330
Format: PDF
File size: 18.7 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning for Industrial Applications" provides a comprehensive overview of the current state of machine learning technology and its applications in various industries. The author, a renowned expert in the field, explores the history and evolution of machine learning, from its early beginnings to the present day, highlighting key milestones and breakthroughs that have shaped the technology into what it is today. The book also delves into the inner workings of machine learning algorithms and models, explaining how they work and how they can be applied to real-world problems. The author emphasizes the importance of understanding the process of technological evolution and the need for a personal paradigm for perceiving the technological process of developing modern knowledge. This paradigm shift is crucial for the survival of humanity and the unification of people in a warring state. The book argues that by embracing this shift, we can harness the power of machine learning to solve some of the world's most pressing challenges, such as climate change, poverty, and inequality. The book is divided into four parts: Part I provides an overview of machine learning, including its history, key concepts, and applications; Part II delves into the inner workings of machine learning algorithms and models; Part III explores the challenges and limitations of machine learning; and Part IV discusses the future of machine learning and its potential impact on society. Throughout the book, the author uses clear and concise language to make complex concepts accessible to readers, making it an essential resource for anyone looking to understand the power and potential of machine learning.
В книге «Машинное обучение для промышленных приложений» представлен всесторонний обзор современного состояния технологии машинного обучения и ее применения в различных отраслях. Автор, известный эксперт в этой области, исследует историю и эволюцию машинного обучения, начиная с его ранних истоков и до наших дней, выделяя ключевые вехи и прорывы, которые сформировали технологию в то, чем она является сегодня. Книга также углубляется во внутреннюю работу алгоритмов и моделей машинного обучения, объясняя, как они работают и как их можно применить к реальным проблемам. Автор подчеркивает важность понимания процесса технологической эволюции и необходимость личностной парадигмы восприятия технологического процесса развития современного знания. Эта смена парадигмы имеет решающее значение для выживания человечества и объединения людей в воюющем государстве. В книге утверждается, что, приняв этот сдвиг, мы можем использовать силу машинного обучения для решения некоторых из самых насущных мировых проблем, таких как изменение климата, бедность и неравенство. Книга разделена на четыре части: в части I представлен обзор машинного обучения, включая его историю, ключевые концепции и приложения; Часть II углубляется во внутреннюю работу алгоритмов и моделей машинного обучения; В части III рассматриваются проблемы и ограничения машинного обучения; и в части IV обсуждается будущее машинного обучения и его потенциальное влияние на общество. На протяжении всей книги автор использует ясный и лаконичный язык, чтобы сделать сложные концепции доступными для читателей, что делает его важным ресурсом для всех, кто хочет понять силу и потенциал машинного обучения.
''

You may also be interested in:

Industrial Applications of Machine Learning
Machine Learning for Industrial Applications
Machine Learning for Industrial Applications
Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Cloud Computing for Machine Learning and Cognitive Applications A Machine Learning Approach
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Machine Learning for Industrial
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Machine Learning and Deep Learning in Real-Time Applications
Building Data Science Applications with FastAPI: Develop, manage, and deploy efficient machine learning applications with Python
Machine Vision and Industrial Robotics in Manufacturing Approaches, Technologies, and Applications
Machine Vision and Industrial Robotics in Manufacturing Approaches, Technologies, and Applications
Machine Vision and Industrial Robotics in Manufacturing: Approaches, Technologies, and Applications
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Deep Learning Techniques for Automation and Industrial Applications
Deep Learning Techniques for Automation and Industrial Applications
Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Applications
Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Applications
Machine Learning for Materials Discovery: Numerical Recipes and Practical Applications (Machine Intelligence for Materials Science)
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Machine Learning Theory and Applications
Machine Learning for Healthcare Applications
Machine Learning Theory to Applications
Machine Learning for Healthcare Applications
Machine Learning Techniques and Industry Applications
Machine Learning for Transportation Research and Applications